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Abstract: Dynamic hand gesture recognition has attracted increasing attention because of its
importance for human-computer interaction. In this paper, we propose a novel motion feature
augmented network (MFA-Net) for dynamic hand gesture recognition from skeletal data. MFA-Net
exploits motion features of finger and global movements to augment features of deep network for
gesture recognition. To describe finger articulated movements, finger motion features are extracted
from the hand skeleton sequence via a variational autoencoder. Global motion features are utilized to
represent the global movements of hand skeleton. These motion features along with the skeleton
sequence are then fed into three branches of a recurrent neural network (RNN), which augment the
motion features for RNN and improve the classification performance. The proposed MFA-Net is
evaluated on two challenging skeleton-based dynamic hand gesture datasets, including DHG-14/28
dataset and SHREC’17 dataset. Experimental results demonstrate that our proposed method achieves
comparable performance on DHG-14/28 dataset and better performance on SHREC’17 dataset when
compared with start-of-the-art methods.

Keywords: skeleton; gesture recognition; recurrent neural networks; feature augmentation

1. Introduction

Hand gesture provides an efficient and natural way for human-computer interaction (HCI) due
to its flexibility and expressiveness. Hand gesture recognition has great potentials for applications
in sign language recognition, remote control and virtual reality and has attracted great research
interest in past decades [1-14]. Generally, hand gesture recognitions are categorized into static hand
gesture recognition [3,4,15] and dynamic hand gesture recognition [5-7]. Static gesture recognition
predicts the configuration or posture of the hand from a single image, while dynamic hand gesture
recognition aims to understand what a hand sequence conveys. In this paper, we focus on dynamic
hand gesture recognition. It remains a challenging task due to high intra-class variance because the
way of performing a gesture differs from person to person.
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Existing methods on dynamic hand gesture recognition usually take RGB images and depth
images [16,17] as input. Some of them use multi-modal input including IR images [6] or audio
stream [7]. Recent progresses on hand pose estimation [18-25] enable the acquisition of more accurate
hand skeletons in real-time. Commercial sensors such as LeapMotion [26] and Intel Realsense
Camera [27] can capture the hand poses with reasonably good quality. Therefore, the research on
dynamic hand gesture recognition from 3D hand skeleton sequences has been greatly promoted.

De Smedt et al. [28] proposed a skeleton-based approach for dynamic hand gesture recognition
and demonstrated its superiority over depth-based approaches. Temporal pyramid representation is
utilized to model temporal information. Similarly, most recent methods for skeleton-based dynamic
hand gesture recognition are based on hand-crafted features [29-31]. The temporal information is not
fully exploited. Another family of solutions utilizes recurrent neural networks (RNN) to process the
input hand skeleton sequences and predict the gesture class [32,33]. However, these methods only
treat the raw skeleton sequences as input and do not fully leverage the properties of dynamic hand
gestures, whose most important clues are articulated movements of fingers and the global movements
of the hand. To this end, we take advantage of hand-crafted motion features and deep features from
RNN to promote the performance of dynamic hand gesture recognition from skeletal data.

In this paper, we propose a Motion Feature Augmented Network (MFA-Net) for skeleton-based
dynamic hand gesture recognition. We extract finger articulated features from the hand skeleton by a
variational autoencoder (VAE), which is an efficient and concise representation of the finger articulated
movements. To describe the global movements of the hand, we extract the global rotation and global
translation of the hand. A distance adaptive discretization scheme is exploited to better model the
amplitude of the gestures. The finger motion features and global features along with the skeleton
sequence are fed into a RNN to predict the class of input gesture. Experiments on the publicly available
skeleton-based DHG-14/28 dataset [28] and SHREC’17 dataset [34] demonstrate the effectiveness of
our proposed method.

A preliminary version of this paper is presented in [35]. This paper extends the preliminary
work [35] in several aspects: (1) A more extensive survey on related work is provided, including
RGB-D/skeleton based static/dynamic hand gesture and feature augmentation methods. (2) Animproved
feature representation is proposed to describe the configurations of hand skeleton articulation via
variational autoencoder (VAE) and further promotes the performance on DHG-14/28 dataset. (3)
The proposed method was evaluated on a new dataset (SHREC’17 dataset [34]) and outperformed
state-of-the-art methods.

The remainder of this paper is organized as follows. In Section 2, we review prior approaches
that are related to our proposed method. In Section 3, we present an overview about our proposed
motion feature augmented network. In Section 4, we provide details of extracting motion features
from hand skeleton sequences. Evaluations on public datasets and ablation studies are provided in
Section 5. Section 6 gives a brief conclusion of this paper and discussion of future work.

2. Related Work

In this section, we briefly review recent methods on hand gesture recognition, which are broadly
categorized into static hand gesture and dynamic hand gesture recognition. For dynamic hand gesture
recognition, we briefly review related work on RGB-D based and skeleton-based methods. We also
review some recent methods of feature augmentation. More comprehensive reviews on hand gesture
recognition are found in [36-39].

2.1. Static Hand Gesture Recognition

Static hand gesture recognition aims to predict the gesture label for a single image. Ren et al. [15]
proposed the finger earth mover’s distance metric (FEMD) for classifying hand gestures using
Kinect camera. Wang et al. [40] proposed a new distance metric called superpixel earth mover’s
distance metric (SP-EMD) to measure the dissimilarity between gestures. Chen et al. [3] first located
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the hand keypoints from the depth images and exploited angle features of finger roots for hand
gesture recognition via finger length weighted Mahalanobis distance. Similarly, hand skeleton is
estimated from depth image and joint angle features are used for classification in [4]. Koller et al. [41]
exploited convolutional neural network (CNN) in weakly supervised training manner for hand gesture
recognition. Despite its advancements in recent years, static hand gesture recognition fundamentally
lacks of capability to handle temporal information and exhibits limitations for practical applications.

2.2. RGB-D Based Dynamic Hand Gesture Recognition

Dynamic hand gesture recognition from RGB-D frames has been actively researched for
decades [42-49]. Zhu et al. [44] proposed a framework using 3D CNN and Convolutional LSTM
to recognize gestures from both RGB and depth sequences. Molchanov et al. [6] proposed a recurrent
3D CNN to perform simultaneous dynamic hand gesture detection and classification from multimodal
data, including depth, color, optical flow, and stereo IR streams. Zhang et al. [45] proposed a deep
architecture to first learn spatiotemporal features using 3D CNN and bidirectional convolutional LSTM
and learn higher-level features via 2D CNN. Kopiiklii et al. [50] proposed a data level fusion strategy
named Motion Fused Frames (MFFs) to fuse motion information into gesture sequences. However,
RGB-D based dynamic hand gesture recognition may suffer from clustered background, heavy input
data burden, etc.

2.3. Skeleton-Based Dynamic Hand Gesture Recognition

As the recent progress of fast and accurate hand pose estimation algorithms [18-24] and related
sensors or cameras, 3D hand poses are more easily obtained. More research interests have been focused
on skeleton-based dynamic hand gesture recognition.

De Smedt et al. [28] proposed a skeleton-based dynamic hand gesture recognition algorithm and
suggested that skeleton-based method achieved superior performance over depth-based methods.
In their approach, a new descriptor named Shape of Connected Joints (SoCJ) is encoded by Fisher
vector representations to describe the hand skeleton. Histogram of hand directions and wrist
orientations are adopted to represent the hand movements in global space. Temporal pyramid is
exploited to model the temporal information. Similar representations are further exploited in [29]
for hand gesture recognition via learning on Riemannian manifold. Boulahia et al. [30] adopted a
feature set named Handwriting-Inspired Features (HIF3D) [51] which was originally proposed for
skeleton-based action recognition to address the problem of skeleton-based dynamic hand gesture
recognition.Caputo et al. [31] applied several processing methods (such as rotation, smoothing, scaling,
etc.) on the hand gesture trajectory and matched it with templates using gesture distance metrics.
These methods are based on carefully designed hand-crafted features, which may be not optimal for
hand gesture recognition.

There are arising trends to use deep learning methods for skeleton-based dynamic hand gesture
recognition. Ntfiez et al. [32] adopted the combination of CNN and LSTM for dynamic hand gesture
recognition and action recognition from skeletal data. A two-stage training strategy is used to first train
the CNN and then fine tune the whole CNN + LSTM network. Ma et al. [33] focused on addressing
noisy skeleton sequences and proposed a LSTM network together with a nested interval unscented
Kalman filter (UKF) to improve performance for noisy datasets.

Different from above existing methods, our proposed method takes advantages of
both hand-crafted features and deep learning methods to obtain optimal features for hand
gesture recognition.

2.4. Feature Augmented Method

There have been some attempts to enhance the capability of deep neural network by fusing
hand-crafted features into the network. Sadanandan et al. [52] proposed the feature augmented deep
neural networks that augmented the raw input images with eigen images to improve the performance
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of cell segmentation. Egede et al. [53] fused HOG features, geometric features and deep learned features
into a Relevance Vector Regressor (RVR) to estimate pain intensity. Similarly, Manivannan et al. [54]
concatenated hand-crafted features with CNN features for gland segmentation. Wang et al. [55]
adopted the idea of combining hand-crafted features and CNN features to address the problem of
action recognition.

Inspired by these methods, we exploited motion features to augment the neural network for better
performance of skeleton-based dynamic hand gesture recognition.

3. Overview of the Proposed Framework

The framework of our proposed motion feature augmented network (MFA-Net) is shown in
Figure 1. MFA-Net takes a hand skeleton sequence as input and predicts the class label of dynamic
hand gesture. It consists of three branches, which process finger motion features, global motion features
and skeletons, respectively. The most important clues for a dynamic hand gesture are articulated
movements of fingers and the global movements of the hand. Therefore, augmenting the original
skeletons with finger and global motion features is beneficial to dynamic hand gesture recognition.
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Figure 1. The framework of our proposed motion feature augmented network (MFA-Net). Finger motion
features and global motion features are extracted from the input dynamic hand gesture skeleton sequence.
These motion features, along with the skeleton sequence, are fed into different branches of a Long-Short
Term Memory (LSTM) network to get the predicted class of input gesture.

Firstly the global motion features and finger motion features are extracted from the input skeleton
sequence. The global movement of a dynamic hand gesture can be represented by the global translation
and rotation of the hand. For finger motion features, we explore two kinds of representations in this
paper: kinematic features and variational autoencoder (VAE) features. The hand skeleton can be
directly and effectively represented by a kinematic hand model whose parameters are the angles of
bones, the global translation and global rotation [20,21]. Therefore, these kinematic hand parameters
can serve as efficient and discriminating features for dynamic hand gesture recognition. We also explore
latent features extracted from a hand skeleton by a variational autoencoder (VAE), which captures
the latent representations of a hand pose. In our approach, theses features with offset and dynamic
pose modeling are utilized as the motion features to represent dynamic hand gestures. The details of
motion feature extraction are presented in Section 4.

We exploit the recurrent neural network (RNN) to model temporal information for its great
successes in temporal sequences recognition tasks [6,56]. More specifically, we adopt the Long-Short
Term Memory (LSTM) network, which is a successful variant of RNN that can model long temporal
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information of sequences. Although LSTM can somehow learn features from the input skeleton
sequences, some information may be absent or weakened, which will hinder the classification
performance. To this end, we augment features for LSTM by combining the global and finger motion
features and the original skeleton. The finger motion features and global motion features are extracted
from the input skeleton sequence. These motion features and the input skeleton sequence are fed into
the LSTM. Each branch contains two LSTM layers and one fully connected (FC) layer. Outputs from
three branches are concatenated together, followed by three FC layers and a softmax layer for class
prediction. All layers are followed by a dropout layer and FC layers are followed by a ReLU function.

4. Motion Feature Extraction

In this section, we describe how to extract finger motion features 7 (S) and global motion features
G(8) from the input hand skeleton sequence S = {s'}L;, where s’ = {x/,y/!,z! }11:1 denotes a hand
skeleton for frame ¢, T is the number of frames of this sequence and | is the number of joints for
hand skeleton.

4.1. Global Motion Feature

The global motion features (global rotation and global translation) are important for dynamic
hand gesture. Typically, the global status of the hand can be determined by the wrist joint, palm joint
and metacarpophalangeal (MCP) joints, which are denoted by p’. We use Kabsch algorithm [57] to
infer the global rotation G, and global translation G; of a hand skeleton:

G, G/] = Kabsch(pt, po), (1)

where G, = (ry, Ty, r,) represents the rotations along three axes, G; = (p, 0, ¢) is the spherical coordinate
of global translation, py is a reference palm that centers at (0,0,0) and faces the camera with the
palm upwards.

The amplitudes of hand gestures differ from person to person for the same gesture. Therefore,
previous work [28] ignored the amplitude part p of global translation. However, sometimes the
amplitude is critical for gestures. For example, gesture Grab and gesture Pinch are quite similar except
for the amplitude of the gesture. To this end, we propose a distance adaptive discretization (DAD)
method to extract global translation amplitude feature, inspired by Distance Adaptive Scheme [4,58],
which is used for feature selection for hand pose estimation. The DAD method discretizes p into M bins
using the threshold {#;}M,. A Gaussian distribution kernel g(x) is used to generate the thresholds:

[ st = 4 [ stxax @

where ¢ is the standard deviation of the Gaussian function. In our experiments, we set o = 1.57 5,
where 7,4, is the radius of the palm. The global feature for a hand skeleton can be written as:

th = [Pbin/ 0, 4)/ Tx, Ty, 7’2}/ (3)

where py;,, is the discrete representation of p using the thresholds determined by Equation (2).

Similar to previous work [59], we use offset pose CDZP and dynamic pose @/, p for global features ®*
to model the global motion features. The offset pose represents the offset from current global features
to those of the first frame of gesture sequence:

P, = ' — D (4)

The dynamic pose represents the difference of global features between current frame and several

previous frames:
@}, = {@' -~ @°s =1,5,10}. (5)
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There features can enhance the representability of the global motion of the hand and thus can
model the temporal information of dynamic hand gesture. All above features are concatenated to form
the global motion features G'(S) = [®', @}, @, | for frame £.

4.2. Finger Motion Feature

For finger motion features, we explore two kinds of representations, namely kinematic features
and variational autoencoder (VAE) features, which are presented in Sections 4.2.1 and 4.2.2,
respectively. Kinematic finger motion features are exploited in our preliminary work [35] and in
this paper we propose a more effective representation for finger motion feature using VAE. The impact
of kinematic and VAE finger motion features is discussed in Section 5.3.

4.2.1. Kinematic Finger Motion Feature

For many dynamic hand gestures, the articulated movements of fingers are critical because the
global movements may be insignificant, especially for fine-grained gestures. We use 20 DoFs (degree
of freedoms) to model the finger articulation movements. For the MCP joints, there are 2 DoFs for
each joint. For proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints, 1 DoF is used to
describe the angle of bone. These kinematic parameters retain rich information for the shape of the
hand skeleton. We use ZK (-) to denote the inverse kinematics function that derives hand kinematic
parameters from the original hand skeleton s':

0}, = IK(s"). (6)
Similarly, we use dynamic pose @, » and offset pose ®f,p to model the finger motion feature:
®ép = ®Itcm B ®ll<m' @)

Opp = {O, — ©,°ls = 1,5,10}. (8)

m

These features are concatenated to obtain the kinematic finger motion features f,ﬁm(S ) =

®p, O] for frame £.

[®t opr ~d

km’

4.2.2. VAE Finger Motion Feature

The pose variational autoencoder (PoseVAE) consists of an encoder (Enc(-)) and a decoder
(Dec(+)), as shown in Figure 2. Both the encoder and the decoder have two fully connected (FC) layers,
with the dimensions of 32 and 20, respectively. The encoder projects the original hand skeleton into
latent representations:

®§me = ETZC(St). 9)

The decoder produces a decoded hand skeleton given the latent features:
st = Dec(®!,,). (10)

The PoseVAE tries to minimize the distance between the original skeleton s’ and the decoded
skeleton s*. We use the encoder to obtain latent features of the hand skeleton to describe the articulated
movements of fingers. Similar to Equations (7) and (8), dynamic pose and offset pose are concatenated
with the VAE features to obtain the VAE finger motion features F7,,(S).

There are several benefits of using VAE features to represent the finger articulated motion. Firstly,
learning latent representations for hand skeletons by PoseVAE has the potential to obtain more
representative features than hand-crafted features such as kinematic features. Secondly, PoseVAE
reduces the noises in hand skeletons that are introduced by inaccurate annotations. As shown in
Figure 2, the input hand pose contains noise in the middle and ring fingers whose joints are inaccurately
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annotated, resulting in a physically implausible hand skeleton. The output pose of PoseVAE is much
smoother and thus removes the unnecessary noise. Therefore, the latent representations learned by the
PoseVAE are more robust and insensitive to the noise, which is beneficial to hand gesture recognition.

Latent
Features

\

Encoder Decoder

Figure 2. PoseVAE: Variational autoencoder for hand pose. We use the encoder to obtain latent features
of the hand skeleton to describe the articulated movements of fingers.

5. Experiments

In this section, we show the experimental results of our proposed method. Firstly, the datasets used
for the experiments and some implementation details are briefly introduced. Secondly, comparisons
with state-of-the-art methods and ablation studies are shown and discussed.

5.1. Implementation

The proposed framework was implemented in Keras [60]. We used Adam [61] algorithm with
mini-batch of 32 to train the network. The parameters of Adam were set to the default settings
suggested in [61], with learning rate Ir = 0.001, B; = 0.9, B = 0.999 and € = 1 x 1078, During
training, the network minimized the cross entropy loss between the predicted labels and the ground
truth labels. The network was trained for 100 epochs. In our experiments, M was set to M = 5 in
Equation (2). Every skeleton sequence was subtracted by the palm position of the first frame and
scaled the amplitude to 1 before fed into third branch in Figure 1.

5.2. Comparison with State-Of-The-Art Methods

Although there are many dynamic hand gesture datasets, e.g. Chalearn IsoGD [49],
Nvidia Gesture Dataset [6], etc., these datasets only provide RGB-D images and do not contains
skeleton information. To evaluate our proposed method of skeleton-based dynamic hand gesture
recognition, we conducted experiments on DHG-14/28 dataset [28] and SHREC’17 dataset [34], which
provide hand skeleton annotations for each gesture sequence. We report the classification accuracy
to evaluate our proposed method, which is the most commonly used evaluation metric for hand
gesture recognition.

5.2.1. DHG-14/28 Dataset

DHG-14/28 [28] is a public dynamic hand gesture dataset that provides hand gesture sequences
with depth images and corresponding skeletons. The depth images were captured by Intel Realsense
Camera and hand skeletons were obtained by Intel Realsense SDK. DHG-14/28 is a challenging
dataset since it contains hand gesture from 20 subjects and has 14 gestures with two different finger
configurations. Totally, DHG-14/28 consists of 2800 sequences. Each hand skeleton is represented by
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22 joints. Since our proposed method focuses on dynamic hand gesture recognition from skeletal data,
we only used the skeleton information of the datasets to conduct our experiments.

On DHG-14/28 dataset, we followed the same experimental setup as previous
work [28,29,32,33,62-64], using the leave-one subject-out cross-validation (LOOCV) strategy
for all following experiments. The proposed network was trained on data from 19 subjects and tested
on the remaining one. Therefore, these experiments were repeated 20 times, with a different subject
being used for testing. There are five fine-grained gestures and nine coarse gestures in DHG-14. In the
experiments presented below, the MFA-Net was trained to classify 14 gestures and the classification
accuracies of all gestures, five fine-grained gestures and nine coarse gestures are reported.

We compared our work with several state-of-the art methods [28,29,32,33,62—-64] on DHG-14/28
dataset. The recognition rates of different methods on DHG-14 and DHG-28 dataset are shown in
Table 1. It shows that our proposed method outperforms most state-of-the-art methods on DHG-14
dataset (14 gestures setting) and achieves comparable performance with SL-fusion-Average [64] and
CNN + LSTM [32]. It should be noted that SL-fusion-Average [64] exploited both depth images and
skeletons as input, while our method only relies on skeletons. CNN + LSTM [32], NIUKF-LSTM [33]
and our proposed MFA-Net are all based on LSTM. NIUKF-LSTM [33] focuses on handling noisy
skeleton data using nested interval unscented Kalman filter (NIUKF) and CNN + LSTM [32] utilizes
CNN to learn spatiotemporal features from skeleton sequence. They both exploit LSTMs afterwards for
gesture classification. Different from these work, our proposed MFA-Net focuses on augmenting the
motion features for LSTM, which well preserves the properties of dynamic hand gestures. Moreover,
the proposed MFA-Net can be compatible with existing LSTM-based methods by replacing the third
branch of our method with prior methods (e.g., NIUKF-LSTM [33]). However, it is out of the focus of
this paper to fully explore the combinations with prior work and we leave it for future work. To better
illustrate the performance of our proposed algorithm, the confusion matrix of 14 classes is shown in
Figure Al. It can be observed that the confusion between gesture Grab and Pinch is severe, due to the
high similarity of these two gestures. However, our algorithm does improve the performance of these
two gestures compared with those of SoCJ + HoHD + HoWR [28], with 60.25% average recognition
rate for these two gestures of our method and 59.0% for SoCJ + HoHD + HoWR [28]. It can be observed
that our method promotes the classification accuracy of fine-grained gestures and coarse gestures
when compared with SoCJ + HoHD + HoWR [28].

Table 1. Comparison of recognition rates (%) with state-of-the-art methods on DHG-14/28 dataset.

Method DHG-14 DHG-28
Fine Coarse Both Both
HON4D [62] - - 75.53 74.03
HOG? [63] - - 80.85  76.53
Smedt et al. [29] - - 82.50 68.11
SoCJ + HoHD + HoWR [28]  73.60 88.33 83.07 80.0
NIUKF-LSTM [33] - - 84.92 80.44
SL-fusion-Average [64] 76.00 90.72 8546 74.19
CNN + LSTM [32] 78.0 89.8 85.6 81.1
MFA-Net (Ours) 75.60 91.39 85.75 81.04

As shown in Table 1, our method is also better than most prior methods and achieves comparable
performance with CNN + LSTM [32] when considering the more complicated 28-gesture classification
task, which demonstrates the effectiveness of our proposed algorithm. Specifically, MFA-Nets boosts
the accuracy by 6.85% when compared with a most recent method [64]. The confusion matrix of 28
classes is shown in Figure A2.
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5.2.2. SHREC’17 Dataset

SHREC’17 dataset [34] was first introduced in SHREC 2017 track to evaluate the performance of
dynamic hand gesture recognition. Similar to DHG-14/28 dataset, SHREC’17 dataset also consists of
14 gestures performed by 28 participants executing the same gesture with two different configurations
of fingers. There are 1960 sequences in the training set and another 840 sequences in the testing set.

Following the evaluation protocol of SHREC’17 track [34], we trained our MFA-Net on 1960
samples and evaluated on the other 840 samples, which is the same with previous work [28,30,31,34,65].
We followed a similar data augmentation strategy as in [32] to add random scaling, shifting,
time interpolation and noise to the original sequences. After data augmentation, the whole training set
contained 9800 samples.

As shown in Table 2, our proposed MFA-Net achieves the accuracy of 91.31% for 14 gestures and
86.55% for 28 gestures and outperforms all prior methods for both experimental settings. Specifically,
MFA-Net improves the accuracy for 28 gestures by about 4.7% when compared with existing best
performance by SoCJ + HoHD + HoWR [28] and 6.07% when compared with more recent work [30].

Table 2. Comparison of recognition rates (%) with state-of-the-art methods on SHREC’17 dataset.

Method 14 Gestures 28 Gestures
HODA4D [62] 78.53 74.03
Riemannian Manifold [65] 79.61 62.00
Key Frames [34] 82.90 71.90
HOG? [63] 83.85 76.53
SoCJ + HoHD + HoWR [28] 88.24 81.90

3 cent + OED + FAD [31] 89.52 -

Boulahia et al. [30] 90.48 80.48
MFA-Net (Ours) 91.31 86.55

The confusion matrices for 14 gestures and 28 gestures recognition on SHREC’17 dataset are
shown in Figures A3 and A4, respectively. Our MFA-Nets achieves accuracy higher than 85.0% for
12 out of 14 gestures. For the more challenging 28 gestures task, MFA-Net obtains accuracy higher
than 85.0% for 15 out of 28 gestures and accuracy higher than 80.0% for 22 out of 28 gestures.

5.3. Ablation Studies

To verify the contributions of different modules of our proposed method, we conducted several
self-comparison experiments on DHG-14 dataset, which has 14 gestures.

Since DHG-14 exploits LOOCYV strategy for evaluation, there are totally 20 splitting protocols for 20
subjects. Existing studies only report the average classification accuracy of these 20 experiments, which
is not sufficient to evaluate the performance and robustness of hand gesture recognition algorithms
for different participants. In the ablation studies, we report the worst, best and average results of 20
different splitting protocols as well as the standard deviation, which is a more comprehensive metric
for taking the inter-subject effects into account.

5.3.1. The Contributions of Motion Features Augmentation

We conducted several baseline experiments to explore how the motion feature augmentation
strategy affects the accuracy of dynamic hand gesture recognition. The first baseline (Skeleton) only
took the skeleton sequences as input and adopted LSTM for gesture recognition. The second baseline
(MF(Kinematic)) only took motion features as input and removed the third branch of the framework
shown in Figure 1. In this baseline, we exploited kinematic features for finger motion features.

As shown in the first three rows of Table 3, in most cases, combining skeleton and motion features
outperforms two baselines in terms of worst, best, and average accuracy and the stand derivation.
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Overall, the Skeleton + MF (Kinematic) has better average accuracies for fine, coarse and all gestures,
which verify the effectiveness of the proposed strategy of augmenting LSTM with motion features.

Table 3. Recognition rates (%) of self-comparison experiments on DHG-14 dataset.

Fine Coarse Both
Method
Best Worst Avg+ Std Best Worst Avg+ Std Best Worst Avg  Std
Skeleton 86.0 42.0 612+ 1237 97.78 7444 8644 +794 9357 6786 7743 +6.82

MF(Kinematic) 84.0 46.0 715+1144 96.67 6444 81.94+817 90.0 5857 7821 %749
S + MF(Kinematic)  90.0 56.0 769 +£9.19 9778 7222 89.0£7.55 9429 6786 84.68 £ 6.67

S + MF(VAE) 96.0 48.0 756 £1029 100.0 76.67 91.39+7.30 96.43 7143 85.75+6.71

5.3.2. The Contributions of VAE Features

We then explored the effects of using VAE features or kinematic features for finger motion feature
extraction. Kinematic features were exploited in our preliminary version of MFA-Net [35] and it
achieves accuracy of 84.69% for DHG-14 dataset, as also shown in the third row of Table 3. When using
PoseVAE to extract latent representations to describe hand skeleton, the accuracy increases to 85.75%,
as shown in the last row of Table 3. In addition, the accuracies for best and worse subject for all
14 gestures are also improved, which indicates the effectiveness of the VAE features.

5.3.3. The Contributions of DAD Strategy

In Section 4.1, we introduce the distance adaptive discretization (DAD) strategy to handle with
the amplitude of dynamic hand gesture. We conducted experiments to remove the term py;,, produced
by DAD strategy in Equation (3). As shown in Table 4, adding DAD term increases the accuracies in
terms of worst, best, average accuracy and the stand derivation, which demonstrates the contributions
of DAD method. Specifically, the overall accuracy increases from 84.60% to 85.75% for 14 gestures on
DHG dataset.

Table 4. Recognition rates (%) of MFA-Net with/without DAD strategy on DHG-14 dataset.

Method Fine Coarse Both

Best Worst Avg 1 Std Best Worst Avg+Std Best Worst Avg+ Std

MFA-Net w/0o DAD  92.0 420 742 +£11.81 100.0 7556 90.39+£6.89 9714 67.86 84.60+7.22
MFA-Net 96.0 48.0 75.6 £10.29 100.0 76.67 91.39+7.30 96.43 7143 85.75+6.71

5.3.4. The Impacts of Different Classifiers

In the proposed MFA-Net, fully connected (FC) layers are utilized to classify gestures from deep
features from LSTM blocks, as shown in Figure 1. To explore the impacts of different choices of
classifiers and demonstrate the discriminability of the learned features, we extracted the deep features
before the last two FC layers and fed them into different classifiers, including k-NN, an enhanced
k-NN algorithm (Centroid Displacement-Based k-NN) [66] and random forest. The hyper-parameters
for these classifiers were chosen using cross-validation on the training set. The recognition rates for
different classifiers on SHREC’17 dataset [34] are shown in Table 5. One of the observations is that
using FC layers as classifier performs better than others. It is intuitive since the deep features are
learned together with the weights of FC layers. Another observation is that, even using simple classifier
such as k-NN, the performances are good when compared with state-of-the-art methods. For example,
the best prior performance on 14 gestures classification is 90.48% by Boulahia et al. [30], while &-NN
obtains recognition rate of 90.60% and CD k-NN achieves 90.85%. On 28 gestures classification task, the
highest recognition accuracy of existing methods is 81.90% [28], while both k-NN and CD k-NN achieve
the accuracy of 86.07%. The considerably good performances of these classifiers demonstrate that the
features produced by our proposed MFA-Net are quite discriminative for hand gesture recognition. To
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better understand this, we used t-SNE [67] to visualize the 2D embedding of the features. Figure 3
shows that the features of MFA-Net exhibit separable feature distributions in manifold and can be
easily distinguished. Moreover, the feature embeddings on testing set are highly similar to those on
training set, which is beneficial to obtain a good classifier.

Table 5. Comparison of recognition rates (%) for different classifiers on SHREC’17 dataset.

Method 14 Gestures 28 Gestures
k-NN 90.60 86.07
CD k-NN [66] 90.83 86.07
Random Forest 90.36 85.24
FC Layers (Ours) 91.31 86.55
o . )
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Figure 3. 2D t-SNE visualization of features before FC layers: (Left) feature embeddings of training set
on SHREC’17 dataset; and (Right) feature embeddings of testing set.

5.4. Run Time Analysis

We evaluated the inference speed of MFA-Net on a computer equipped with 3.4 GHz i7-4770 CPU
and Nvidia Tesla K40c GPU. MFA-Net takes about 1.47 ms to extract motion features for one hand
skeleton and about 83.2 ms to predict the gesture for an input dynamic hand gesture sequence with
64 skeletons. Therefore, on average MFA-Net takes 2.77 ms to process one hand skeleton. In other
words, MFA-Net can process 361 skeletons per second, which is sufficient for real-time performance.

6. Conclusions

This paper proposes the motion feature augmented network (MFA-Net) to recognize
skeleton-based dynamic hand gestures. Finger motion features are extracted via a variational
autoencoder from the hand skeleton sequence to describe finger articulated movements. Global
motion features are utilized to represent the global movements of hand skeleton. The motion
features, along with the skeleton sequence, are fed into three branches of RNN to predict the
label of input gesture. Experiments demonstrate that our proposed MFA-Net achieves comparable
performance with state-of-the-art methods on the public DHG-14/28 dataset and best performance on
SHREC’17 dataset. Future work may focus on a hierarchical coarse to fine framework to achieve better
classification performance.
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Appendix A. Confusion Matrices
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For DHG-14/28 [28] datasets, the confusion matrix of 14 classes is shown in Figure Al and the

confusion matrix of 28 classes is shown in Figure A2.

The confusion matrices for 14 gestures and 28 gestures recognition on SHREC'17 dataset [34] are

shown in Figures A3 and A4, respectively.
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Figure A1l. The confusion matrix of the proposed approach for DHG-14.
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Figure A2. The confusion matrix of the proposed approach for DHG-28.
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Figure A3. The confusion matrix of the proposed approach for SHREC’17 (14 gestures) dataset.

Figure A4. The confusion matrix of the proposed approach for SHREC’17 (28 gestures) dataset.

G(1) 3.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.57 0.00 0.00 0.00
G(2) 0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00 0.00 0.00 0.00 0.00 0.00
T(1) 21.21 0.00 EEESE 0.00 3.03 0.00 9.09 0.00 3.03 0.00 0.00 0.00 0.00 0.00
T(2) 0.00 3.57 0.00 0.00 0.00 0.00 0.00 3.57 0.00 0.00 0.00 0.00
E(1) 0.00 0.00 3.70 0.00 370 000 370 0.00 0.00 0.00 0.00 0.00 3.70
E(2) 0.00 0.00 0.00 3.57 0.00 EENAW 3.57 3.57 0.00 0.00 0.00 0.00 0.00 0.00
P(1) 7.41 0.00 0.00 0.00 0.00 11.11 0.00 0.00 3.70 0.00 0.00 0.00
P(2) 0.00 12.50 0.00 417 0.00 0.00 0.00 417 0.00 0.00 0.00 0.00 0.00
R-CW(1) 3.45 0.00 0.00 0.00 0.00 0.00 0.00 % 13.79 345 0.00 3.45 0.00
R-CW(2) 0.00 0.00 0.00 3.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.69
R-CCW(1) 0.00 3.12 0.00 0.00 0.00 0.00 0.00 0.00 B 0.00 [EEXEEN 9.38 0.00 0.00
R-CCW(2) 3.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.85 0.00 0.00

s-R(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

s-R(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

s1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

s-(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

s-u(1) 0.00 0.00 3.12 0.00 6.25 0.00 0.00 0.00 0.00 0.00 3.12 0.00
s-u2) 0.00 0.00 0.00 0.00 0.00 8.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s0(1) 0.00 0.00 3.23 0.00 0.00 0.00 6.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s-p(2) 0.00 0.00 0.00 3.33 0.00 0.00 0.00 3.33 0.00 6.67 0.00 0.00 0.00 0.00
s-x(1) 0.00 0.00 0.00 0.00 0.00 0.00 3.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s-x(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s-+(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
s-+(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sv(1) 0.00 0.00 0.00 0.00 0.00 000 000 0.00 000 000 0.00 000 000 0.00
sv(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sh(1) 0.00 0.00 0.00 0.00 2.63 0.00 2.63 2.63 0.00 0.00 0.00 0.00 5.26 0.00
sh(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

o o = = I o T T z') § é g E E
8
References

1.

0.00
0.00
0.00
0.00
0.00
1.72

0.00
0.00
0.00
0.00
0.00

1.37
S-L

0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00 3.85

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.63
0.00

s

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.86

s12)

0.00
0.00
3.64
1.96
0.00
1.72
0.00

1.64
0.00
0.00
0.00

1.37
S-U

3.57  0.00
0.00  0.00
0.00  0.00
0.00  0.00
3.70 0.00
357  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00  0.00
3.85 0.00

0.00

0.00

0.00

0.00

9.38

0.00
4.92
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00

0.00
S-D

0.00  0.00
0.00  0.00
3.03  0.00
0.00 3.57
0.00 0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00

0.00
S-X

0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00  0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00

0.00
S+

0.00  0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00 0.00
0.00  0.00
0.00 0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00
0.00 0.00
0.00  0.00
0.00  0.00

5.56 [CEEEN 0.00 278 0.00 0.00 0.0 0.00

3.23
000 000 0.00 000 0.00
000 0.00 000 % 3.03
000 000 000 000 0.00

000 000 000 000 000 0.00
000 000 000 000 000 0.00
000 000 000 0.00 000 0.00
000 000 000 000 000 0.0
000 000 000 000 000 0.00
0.00

I 3 3 3 3 3

000 [EXEY 645 000 000 0.00 0.00

0.00  0.00
0.00 0.00
0.00  0.00
0.00
3.45
0.00 0.00
0.00  0.00
0.00  0.00

S-+1)
5-+2)

0.00 0.00
0.00 0.00
0.00 1.82
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
3.28 0.00
0.00 0.00
0.00

100.00 exee)

S-V

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00

sV

Sh

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 345 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 3.85 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 3.85 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
333 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
7.14 0.00 0.00

0.00  0.00
0.00 0.00

571 000 000 000 000 000 000 000 286 o000 |EEE

sv2)
sh(1)
sh(2)

13 of 16

100

80

60

40

20

100

Mitra, S.; Acharya, T. Gesture recognition: A survey. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2007,

37,311-324. [CrossRef]

Zeng, B.; Wang, G.; Lin, X. A hand gesture based interactive presentation system utilizing heterogeneous
cameras. Tsinghua Sci. Technol. 2012, 17, 329-336. [CrossRef]
Chen, X.; Shi, C.; Liu, B. Static hand gesture recognition based on finger root-center-angle and length
weighted Mahalanobis distance. In Proceedings of the SPIE 9897, Real-Time Image and Video Processing,

Brussels, Belgium, 3-7 April 2016.

Dong, C.; Leu, M.C,; Yin, Z. American sign language alphabet recognition using microsoft kinect.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston,

MA, USA, 7-12 June 2015.

Ohn-Bar, E.; Trivedi, M.M. Hand gesture recognition in real time for automotive interfaces: A multimodal
vision-based approach and evaluations. IEEE Trans. Intell. Transp. Syst. 2014, 15, 2368-2377. [CrossRef]


http://dx.doi.org/10.1109/TSMCC.2007.893280
http://dx.doi.org/10.1109/TST.2012.6216765
http://dx.doi.org/10.1109/TITS.2014.2337331

Sensors 2019, 19, 239 14 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Molchanov, P; Yang, X.; Gupta, S.; Kim, K,; Tyree, S.; Kautz, J. Online detection and classification of dynamic
hand gestures with recurrent 3d convolutional neural network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016.

Neverova, N.; Wolf, C.; Taylor, G.; Nebout, F. ModDrop: Adaptive Multi-Modal Gesture Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1692-1706. [CrossRef]

Palacios, ].M.; Sagtiés, C.; Montijano, E.; Llorente, S. Human-computer interaction based on hand gestures
using RGB-D sensors. Sensors 2013, 13, 11842-11860. [CrossRef] [PubMed]

Choi, HR,; Kim, T. Combined dynamic time warping with multiple sensors for 3D gesture recognition.
Sensors 2017, 17, 1893. [CrossRef]

Abraham, L.; Urru, A.; Normani, N.; Wilk, M.; Walsh, M.; O’Flynn, B. Hand tracking and gesture recognition
using lensless smart sensors. Sensors 2018, 18, 2834. [CrossRef]

Zhou, Q.; Xing, J.; Chen, W.; Zhang, X.; Yang, Q. From Signal to Image: Enabling Fine-Grained Gesture
Recognition with Commercial Wi-Fi Devices. Sensors 2018, 18, 3142. [CrossRef]

Wang, X.; Tanaka, ]. GesID: 3D Gesture Authentication Based on Depth Camera and One-Class Classification.
Sensors 2018, 18, 3265. [CrossRef]

Wen, R; Tay, W.L.; Nguyen, B.P; Chng, C.B.; Chui, C.K. Hand gesture guided robot-assisted surgery based
on a direct augmented reality interface. Comput. Methods Programs Biomed. 2014, 116, 68-80. [CrossRef]
Wen, R.; Nguyen, B.P.; Chng, C.B.; Chui, C.K. In situ spatial AR surgical planning using projector-Kinect
system. In Proceedings of the Fourth Symposium on Information and Communication Technology, Danang,
Vietnam, 5-6 December 2013.

Ren, Z.; Yuan, J.; Meng, J.; Zhang, Z. Robust part-based hand gesture recognition using kinect sensor.
IEEE Trans. Multimed. 2013, 15, 1110-1120. [CrossRef]

Wang, G.; Yin, X.; Pei, X.; Shi, C. Depth estimation for speckle projection system using progressive reliable
points growing matching. Appl. Opt. 2013, 52, 516-524. [CrossRef]

Shi, C.; Wang, G.; Yin, X.; Pei, X.; He, B.; Lin, X. High-accuracy stereo matching based on adaptive ground
control points. IEEE Trans. Image Process. 2015, 24, 1412-1423.

Supancic, J.S.; Rogez, G.; Yang, Y.; Shotton, J.; Ramanan, D. Depth-based hand pose estimation: Data,
methods, and challenges. In Proceedings of the IEEE International Conference on Computer Vision,
Santiago, Chile, 7-13 December 2015.

Oberweger, M.; Wohlhart, P; Lepetit, V. Training a feedback loop for hand pose estimation. In Proceedings
of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December 2015.

Tang, D.; Taylor, J.; Kohli, P.,; Keskin, C.; Kim, T.K.; Shotton, J. Opening the black box: Hierarchical sampling
optimization for estimating human hand pose. In Proceedings of the IEEE International Conference on
Computer Vision, Santiago, Chile, 7-13 December 2015.

Ye, Q.; Yuan, S.; Kim, TK. Spatial Attention Deep Net with Partial PSO for Hierarchical Hybrid Hand
Pose Estimation. In Proceedings of the The European Conference on Computer Vision, Amsterdam,
The Netherlands, 11-14 October 2016.

Guo, H.; Wang, G.; Chen, X.; Zhang, C.; Qiao, F; Yang, H. Region Ensemble Network: Improving
Convolutional Network for Hand Pose Estimation. In Proceedings of the 24th IEEE International Conference
on Image Processing, Beijing, China, 12-17 September 2017.

Chen, X.; Wang, G.; Guo, H.; Zhang, C. Pose Guided Structured Region Ensemble Network for Cascaded
Hand Pose Estimation. arXiv 2017, arXiv:1708.03416.

Wang, G.; Chen, X.; Guo, H.; Zhang, C. Region Ensemble Network: Towards Good Practices for Deep 3D
Hand Pose Estimation. J. Vis. Commun. Image Represent. 2018, 55, 404—414. [CrossRef]

Chen, X.; Wang, G.; Zhang, C.; Kim, TK.; Ji, X. SHPR-Net: Deep Semantic Hand Pose Regression from Point
Clouds. IEEE Access 2018, 6, 43425-43439. [CrossRef]

Motion, L. Leap Motion Controller. 2015. Available online: https://www.leapmotion.com
(accessed on 2 December 2018).

Keselman, L.; Iselin Woodfill, J.; Grunnet-Jepsen, A.; Bhowmik, A.; Gupta, M.; Jauhari, A.; Kulkarni, K.;
Jayasuriya, S.; Molnar, A.; Turaga, P; et al. Intel RealSense Stereoscopic Depth Cameras. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Venice, Italy,
21-26 July 2017.


http://dx.doi.org/10.1109/TPAMI.2015.2461544
http://dx.doi.org/10.3390/s130911842
http://www.ncbi.nlm.nih.gov/pubmed/24018953
http://dx.doi.org/10.3390/s17081893
http://dx.doi.org/10.3390/s18092834
http://dx.doi.org/10.3390/s18093142
http://dx.doi.org/10.3390/s18103265
http://dx.doi.org/10.1016/j.cmpb.2013.12.018
http://dx.doi.org/10.1109/TMM.2013.2246148
http://dx.doi.org/10.1364/AO.52.000516
http://dx.doi.org/10.1016/j.jvcir.2018.04.005
http://dx.doi.org/10.1109/ACCESS.2018.2863540
https://www. leapmotion. com

Sensors 2019, 19, 239 15 of 16

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

De Smedt, Q.; Wannous, H.; Vandeborre, J.P. Skeleton-based Dynamic hand gesture recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas,
NV, USA, 26 June-1 July 2016.

De Smedt, Q.; Wannous, H.; Vandeborre, ]J.P. 3D Hand Gesture Recognition by Analysing Set-of-Joints
Trajectories. In Proceedings of the International Conference on Pattern Recognition (ICPR)/UHA3DS 2016
Workshop, Cancun, Mexico, 4 December 2016.

Boulahia, S.Y.; Anquetil, E.; Multon, F; Kulpa, R. Dynamic hand gesture recognition based on 3D pattern
assembled trajectories. In Proceedings of the 7th IEEE International Conference on Image Processing Theory,
Tools and Applications (IPTA 2017), Montreal, QC, Canada, 28 November-1 December 2017.

Caputo, EM.; Prebianca, P.; Carcangiu, A.; Spano, L.D.; Giachetti, A. Comparing 3D trajectories for simple
mid-air gesture recognition. Comput. Gr. 2018, 73, 17-25. [CrossRef]

Nriez, J.C.; Cabido, R.; Pantrigo, J.].; Montemayor, A.S.; Vélez, ].E. Convolutional Neural Networks and
Long Short-Term Memory for skeleton-based human activity and hand gesture recognition. Pattern Recognit.
2018, 76, 80-94. [CrossRef]

Ma, C.; Wang, A.; Chen, G.; Xu, C. Hand joints-based gesture recognition for noisy dataset using nested
interval unscented Kalman filter with LSTM network. Vis. Comput. 2018, 34, 1053-1063. [CrossRef]

De Smedt, Q.; Wannous, H.; Vandeborre, ].P.; Guerry, J.; Le Saux, B.; Filliat, D. SHREC’17 Track: 3D Hand
Gesture Recognition Using a Depth and Skeletal Dataset. In Proceedings of the 10th Eurographics Workshop
on 3D Object Retrieval, Lyon, France, 23-24 April 2017.

Chen, X.; Guo, H.; Wang, G.; Zhang, L. Motion Feature Augmented Recurrent Neural Network for
Skeleton-based Dynamic Hand Gesture Recognition. In Proceedings of the 24th IEEE International
Conference on Image Processing (ICIP), Beijing, China, 7-20 September 2017.

Cheng, H.; Yang, L.; Liu, Z. Survey on 3D Hand Gesture Recognition. IEEE Trans. Circuits Syst. Video Technol.
2016, 26, 1659-1673. [CrossRef]

Asadi-Aghbolaghi, M.; Clapés, A.; Bellantonio, M.; Escalante, H.].; Ponce-L6pez, V.; Bar6, X.; Guyon, I;
Kasaei, S.; Escalera, S. Deep learning for action and gesture recognition in image sequences: A survey.
In Gesture Recognition; Springer: Belin, Germany, 2017; pp. 539-578.

Cheok, M.J.; Omar, Z.; Jaward, M.H. A review of hand gesture and sign language recognition techniques.
Int. J. Mach. Learn. Cybern. 2017. [CrossRef]

Wang, P; Li, W.; Ogunbona, P.; Wan, J.; Escalera, S. RGB-D-based human motion recognition with deep
learning: A survey. Comput. Vis. Image Understand. 2018, 171, 118-139. [CrossRef]

Wang, C.; Liu, Z.; Chan, S.C. Superpixel-based hand gesture recognition with kinect depth camera.
IEEE Trans. Multimed. 2015, 17, 29-39. [CrossRef]

Koller, O.; Ney, H.; Bowden, R. Deep hand: How to train a CNN on 1 million hand images when your data
is continuous and weakly labelled. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 27-30 June 2016.

Wang, P; Li, Z.; Hou, Y.; Li, W. Action recognition based on joint trajectory maps using convolutional neural
networks. In Proceedings of the 2016 ACM on Multimedia Conference, Amsterdam, The Netherlands,
15-19 October 2016.

Hou, Y;; Wang, S.; Wang, P.; Gao, Z.; Li, W. Spatially and temporally structured global to local aggregation of
dynamic depth information for action recognition. IEEE Access 2018, 6, 2206-2219. [CrossRef]

Zhu, G.; Zhang, L.; Shen, P; Song, ]. Multimodal gesture recognition using 3-D convolution and convolutional
LSTM. IEEE Access 2017, 5, 4517—4524. [CrossRef]

Zhang, L.; Zhu, G.; Shen, P.; Song, J.; Shah, S.A.; Bennamoun, M. Learning spatiotemporal features using
3D CNN and convolutional Istm for gesture recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Venice, Italy, 22-29 October 2017.

Wan, J.; Guo, G.; Li, S.Z. Explore efficient local features from RGB-D data for one-shot learning gesture
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1626-1639. [CrossRef]

Wan, J.; Ruan, Q.; Li, W.; An, G.; Zhao, R. 3D SMoSIFT: three-dimensional sparse motion scale invariant
feature transform for activity recognition from RGB-D videos. ]. Electron. Imaging 2014, 23, 023017. [CrossRef]
Wan, J.; Ruan, Q.; Li, W,; Deng, S. One-shot learning gesture recognition from RGB-D data using bag of
features. J. Mach. Learn. Res. 2013, 14, 2549-2582.


http://dx.doi.org/10.1016/j.cag.2018.02.009
http://dx.doi.org/10.1016/j.patcog.2017.10.033
http://dx.doi.org/10.1007/s00371-018-1556-0
http://dx.doi.org/10.1109/TCSVT.2015.2469551
http://dx.doi.org/10.1007/s13042-017-0705-5
http://dx.doi.org/10.1016/j.cviu.2018.04.007
http://dx.doi.org/10.1109/TMM.2014.2374357
http://dx.doi.org/10.1109/ACCESS.2017.2782258
http://dx.doi.org/10.1109/ACCESS.2017.2684186
http://dx.doi.org/10.1109/TPAMI.2015.2513479
http://dx.doi.org/10.1117/1.JEI.23.2.023017

Sensors 2019, 19, 239 16 of 16

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Wan, J.; Zhao, Y.; Zhou, S.; Guyon, I.; Escalera, S.; Li, S.Z. Chalearn looking at people RGB-D isolated and
continuous datasets for gesture recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June-1 July 2016.

Koptikli, O.; Kose, N.; Rigoll, G. Motion Fused Frames: Data Level Fusion Strategy for Hand Gesture
Recognition. arXiv 2018, arXiv:1804.07187

Boulahia, S.Y.; Anquetil, E;; Kulpa, R; Multon, F.  HIF3D: Handwriting-Inspired Features for 3D
skeleton-based action recognition. In Proceedings of the 23rd International Conference on Pattern
Recognition (ICPR), Cancun, Mexico, 4-8 December 2016.

Sadanandan, S.K.; Ranefall, P.; Wahlby, C. Feature Augmented Deep Neural Networks for Segmentation
of Cells. In Proceedings of the European Conference on Computer Vision Workshops, Amsterdam, The
Netherlands, 8-10 and 15-16 October 2016.

Egede, J.; Valstar, M.; Martinez, B. Fusing deep learned and hand-crafted features of appearance, shape,
and dynamics for automatic pain estimation. In Proceedings of the 12th IEEE International Conference on
Automatic Face & Gesture Recognition (FG 2017), Amsterdam, The Netherlands, 8-10 October 2017.
Manivannan, S.; Li, W.; Zhang, J.; Trucco, E.; McKenna, S.J. Structure Prediction for Gland Segmentation with
Hand-Crafted and Deep Convolutional Features. IEEE Trans. Med. Imaging 2018, 37, 210-221. [CrossRef]
Wang, S.; Hou, Y;; Li, Z.; Dong, J.; Tang, C. Combining convnets with hand-crafted features for action
recognition based on an HMM-SVM classifier. Multimed. Tools Appl. 2016, 77, 18983-18998. [CrossRef]

Du, Y.; Wang, W.; Wang, L. Hierarchical recurrent neural network for skeleton based action recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7-12 June 2015.

Kabsch, W. A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Sect. A 1976,
32,922-923. [CrossRef]

Liang, H.; Yuan, J.; Thalmann, D. Parsing the hand in depth images. IEEE Trans. Multimed. 2014,
16, 1241-1253. [CrossRef]

Chen, H.; Wang, G.; Xue, ].H.; He, L. A novel hierarchical framework for human action recognition.
Pattern Recognit. 2016, 55, 148-159. [CrossRef]

Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 16 July 2018).
Kingma, D.; Ba, ]. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Oreifej, O.; Liu, Z. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23-28 June 2013.

Ohn-Bar, E.; Trivedi, M. Joint angles similarities and HOG2 for action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23-28 June 2013.
Lai, K.; Yanushkevich, S.N. CNN + RNN Depth and Skeleton based Dynamic Hand Gesture Recognition.
In Proceedings of the 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 2024
August 2018.

Devanne, M.; Wannous, H.; Berretti, S.; Pala, P.; Daoudi, M.; Del Bimbo, A. 3-d human action recognition
by shape analysis of motion trajectories on riemannian manifold. IEEE Trans. Cybern. 2015, 45, 1340-1352.
[CrossRef] [PubMed]

Nguyen, B.P;; Tay, W.L.; Chui, C.K. Robust Biometric Recognition From Palm Depth Images for Gloved
Hands. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 799-804. [CrossRef]

Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. . Mach. Learn. Res. 2008, 9, 2579-2605.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/TMI.2017.2750210
http://dx.doi.org/10.1007/s11042-017-5335-0
http://dx.doi.org/10.1107/S0567739476001873
http://dx.doi.org/10.1109/TMM.2014.2306177
http://dx.doi.org/10.1016/j.patcog.2016.01.020
https://github.com/fchollet/keras
http://dx.doi.org/10.1109/TCYB.2014.2350774
http://www.ncbi.nlm.nih.gov/pubmed/25216492
http://dx.doi.org/10.1109/THMS.2015.2453203
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Static Hand Gesture Recognition
	RGB-D Based Dynamic Hand Gesture Recognition
	Skeleton-Based Dynamic Hand Gesture Recognition
	Feature Augmented Method

	Overview of the Proposed Framework
	Motion Feature Extraction
	Global Motion Feature
	Finger Motion Feature
	Kinematic Finger Motion Feature
	VAE Finger Motion Feature


	Experiments
	Implementation
	Comparison with State-Of-The-Art Methods
	DHG-14/28 Dataset
	SHREC'17 Dataset

	Ablation Studies
	The Contributions of Motion Features Augmentation
	The Contributions of VAE Features
	The Contributions of DAD Strategy
	The Impacts of Different Classifiers

	Run Time Analysis

	Conclusions
	Confusion Matrices
	References

