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Abstract— We propose a novel electrocardiogram (ECG) beat
classification algorithm using a combination of Bidirectional
Recurrent Neural Network (BiRNN) and Convolutional Neural
Network (CNN) named as BiRCNN. Our model is an end-
to-end model. The morphological features of each ECG beat
is extracted by CNN. Then the features of each beat are
considered in the context via BiRNN. The assessment on MIT-
BIH Arrhythmia Database (MITDB) resulted in a sensitivity of
98.7% and a positive predictivity of 96.4% on average for the
VEB class. For the SVEB class, the sensitivity was 92.8%, which
was an over 6% promotion compared with the state-of-the-art
method, and the positive predictivity was 81.9% on average. The
results demonstrate the superior classification performance of
our method.

I. INTRODUCTION

Electrocardiogram (ECG) is a noninvasive measurement
method widely used in the diagnosis and monitoring for
cardiovascular disease. It reflects the electrical depolarization
and repolarization patterns of the heart. Any disturbance
of heart rate, or change in the morphological pattern, is
an indiction of arrhythmia[1]. And automatic classification
of arrhythmia by ECG has attracted wide attention for
researchers. However, it is a challenging task since ECG
signal shows significant variations for different patients under
different conditions.

A wide range of automatic ECG classification methods
have been proposed. These methods mainly contains two
parts: feature extraction and classification. A variety of hand-
crafted features has been extracted, inluding higher order
statistics [2], the independent component analysis (ICA)
based features [3], hermite transform coefficients [2][4][5],
wavelet transform features [6][7][8] and temporal features
[3][4][5][6][8]. However, these handcrafted features may not
represent the underlying characteristics of ECG waveform
and restrict the performance.

Traditional classifiers like support vector machines[2],
optimum-path forest[4] and other frequently-used classifiers
such as Bayesian classifier and decision trees are great on
small data sets, but don’t perform well on large data sets,
which means they can’t take full advantage of big data.

Deep learning methods have been applied in many fields
and have great achievement, including the field of ECG
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beat classification. An adaptative implementation of 1D
Convolutional Neural Network (CNN) was proposed in [9],
which used CNN for feature extraction and classification and
achieved good results. Although CNN is good for extracting
interior morphological features, it does not utilize the in-
formation among beats. In [10], recurrent neural networks
(RNN) and clustering technique were used to classify ECG
beats. Clustering technique was used to obtain a represen-
tative training data set and beat morphology information
was directly fed into RNN to get classification results. This
method has achieved the state-of-the-art performance so far.

In this work, we propose a novel end-to-end beat classi-
fication model based on a combination of Bidirectional Re-
current Neural Network (BiRNN) and Convolutional Neural
Network (CNN) named as BiRCNN. ECG waveform from
lead I and lead II would be fed into CNN to extract interior
morphological features automatically, then these features
were put into BiRNN to learn the relations between the
current beat and the adjacent beats. Besides, HRV (short
for heat rate variance, measuring the length of RR interval)
sequences of several beats would be put into BiRNN to
extract temporal features. Finally, morphological features
and temporal features would be considered synthetically to
generate the classification result. The experimental results
on the MIT-BIH Arrhythmia Database (MITDB) demonstrate
that our proposed system achieves superior beat classification
performance.

II. SYSTEM FRAMEWORK

The framework of our proposed system is shown in
Figure 1. Firstly ECG data is preprocessed by denoising,
data segmentation and grouping. Then the processed data is
randomly selected as training data set, and three evaluation
data sets are established. Finally our model is trained and
then test on the evaluation data sets respectively.

A. Preprocessing

Firstly, we utilize a wavelet-based denoising method to
filter the noise. ECG signals are decomposed into 9 scales
using Dual-Tree Complex Wavelet Transform(DTCWT)[11].
Information in scale 3 to 8 is retained to reconstruct the
signals, while the others are regarded as noise and removed.

Secondly, prior information about ECG signals would be
used to segment data from each record. Annotations of R
peaks are used to locate beats. We then use a window
function g(x) to segment waveform of each beat. The window
function g(x) is defined as



Fig. 1. System Framework.

g(x) =


s(100ms,max(xR − 250ms, 0.7×RRleft)),

x < xR

1− s(100ms,min(xR + 100ms, 0.5×RRright)),
x ≥ xR

where function s(var,ave) represents the sigmoid function,
with var meaning the variance of the sigmoid and ave
meaning the distance between the midpoint of the sigmoid
and the origin. xR is the R peak’s position of the current
beat. RRleft represents the RR interval between the current
beat and the previous beat, and RRright represents the RR
interval between the current beat and the following beat.

Next, signal of each beat segmented by the window
function is normalized as a 721-dim vector. The first 180
points and the last 180 points are discarded to reduce
data dimension since these points are mostly zero and the
remaining 361 points are enough to reflect the characteristics
of each beat.

Lastly, when the 361-dim vector of each beat is extracted,
we group it with its previous Lt beats and its following Lt

beats, resulting as a Lb×361 matrix, where Lb = 2×Lt+1.
Lb is the number of beats for each beat group and it will be
discussed later. The reason we group beats like this is that
we expect our network to learn the features of beats in the
context, which is better than considering the features of each
beat separately.

B. Classification

We create an end-to-end model named BiRCNN to ac-
complish the beat classification task. There are two channels
of our model: ECG channel and HRV channel. ECG channel
learns the morphological features of ECG signal from two
leads. HRV channel learns the temporal features. Final clas-
sification result is acquired from the features offered by both
of ECG channel and HRV channel. More details about our
model would be presented in the following part.

III. BIRCNN MODEL

BiRCNN is used for both feature extraction and classifi-
cation of ECG beats. The network architecture of our model
is shown in Figure 2.

Fig. 2. Network Architecture of BiRCNN Model

A. ECG Channel

In ECG channel, two leads of signal would be processed
separately with the same network configuration since some
types are easier to be detected from one lead while the others
are more suitable to be detected by the other lead.

Data of each beat group, which is arranged as a Lb×361
matrix, is fed into our networks. Signal of each beat group
is processed stepped by time. In every timestep, data of each
beat would be fed into 3 convolutional layers. Each convo-
lutional layer is followed by a Rectified Linear Unit (ReLU)
activation function. The feature maps are then fed into a
max pooling layer and a dropout layer with a keep rate of
0.5. To achieve the superior result, we use 128 convolutional
kernels with kernel size of 36 for each convolutional layer,
and thus the output size of features is Lb×16×128. Overall,



the interior morphological features of each beat are extracted
by CNNs.

The output features from the CNNs are then flattened to
Lb×2048, in order to be input to the Bidirectional RNN
(BiRNN). BiRNN, which is formed by concatenating a
forwarding simple RNN and a backwarding simple RNN,
would be utilized to learn the relations of features in the
context. A dropout layer with keep rate of 0.25 would be
followed after that to keep sparsity of the networks. As a
result, the features of size 256 from each lead would be
concatenated.

B. HRV Channel

In HRV channel, HRV sequences of size 11×2 are put into
BiRNN to extract the temporal features. HRV of the current
R peak and the next R peak is combined with its previous and
its following 5 HRV values respectively as a 11-dim vector.
HRV of the previous R peak and the current R peak with the
surrounding 10 HRV values are combined as the other 11-
dim vector. The vectors are normalized and fed into BiRNN
to learn the temporal features. The feature size is 256. The
reason we use the HRV channel is that some SVEBs have
similar morphology with normal beats, but have abnormal
RR intervals. Also, in [6], the authors draw the conclusion
that the RR interval could improve ECG beat classification
performance.

Finally, output features are concatenated to put into a 4-
class softmax classifier to acquire the ultimate classification
result. We implement the total network based on a deep
learning library named Keras.

IV. RESULTS AND DISCUSSION

A. Experiment Setups

As recommended by AAMI[12], all beats should be clas-
sified into five types: normal (N), ventricular (V, VEB),
supraventricular (S, SVEB), fusion of normal and ventric-
ular (F) and unclassified (Q). In this paper, type Q is not
considered since it is marginally represented in the available
database and the key mission is to distinguish VEBs and
SVEBs from others.

We establish our model and evaluate its performance on
MIT-BIH arrhythmia database (MITDB), which is widely
used in researches on ECG classification[2]-[6],[8]-[10],[13].
MITDB contains 48 records, each containing two-lead ECG
signals for 30-min duration selected from 24-h recordings of
47 individuals. Continuous ECG signals are bandpass-filtered
at 0.1-100 Hz and then digitized at 360 Hz. According to
the AAMI convention, 4 paced records (102,104,107,217)
are excluded from the training and test data sets.

The beat labels in the MITDB from 16 subtypes of 4 types
are counted as in Table I. Data of type N (including subtypes
of N,L,R,B) counts too much in the data set, so we randomly
choose 8,000 pieces of data from those of type N, and then
combined them with the data of the other 3 types as a new
data set. Due to the fact that there are differences in the
waveform among beats of different subtypes, we build the
training set from one third of data randomly selected from

each subtype in the new data set. The evaluation data sets
are clarified in the following part.

TABLE I
NUMBERS OF BEAT LABELS IN MITDB

Label N L R B A a J S
Number 74528 8073 7257 0 2545 150 83 2
Label e j n V E r F None
Number 16 229 0 6903 106 0 803 0

For classification performance measured, four standard
metrics are used: classification accuracy (Acc.), sensitivity
(Sen.), specificity (Spe.) and positive predictivity (Ppr.).
Using true positive (TP), false positive (FP), true negative
(TN), false negative (FN), Acc., Sen., Spe., Ppr. are defined
as follows. Acc. is the ratio of the number of correctly
classified patterns to the total number of patterns classified:
Acc.=(TP+TN)/(TP+TN+FP+FN). Sen. is the rate of cor-
rectly classified events among all events: Sen.=TP/(TP+FN).
Spe. is the rate of correctly classified nonevents among all
nonevents: Spe.=TN/(TN+FP). Ppr. is the rate of correctly
classified events in all detected events: Ppr.=TP/(TP+FP).

B. Results on MIT-BIH Arrhythmia Database

Our proposed algorithm is compared with four other ex-
isting algorithms[5][8][9][10], all of which comply with the
AAMI standards. We evaluate the performance on MITDB
in three evaluation data sets. Data Set 1 contains 11 records
(200, 202, 210, 213, 214, 219, 221, 228, 231, 233, 234)
for VEB detection, and another three records (212, 222,
232) are added for SVEB detection. Data Set 2 contains 24
records (200 and onward). Data Set 3 contains all 44 records
(without paced records). The average classification results of
10 independent experiments and comparison with the three
algorithms are shown in Table II.

Several observations could be made from Table II. First,
compared with [5][8][9], our results are much better for
all metrics. Second, the performance of our method is
comparable with that of [10], which is the state-of-the-art
method at present. And it is worth noting that we have a
over 6% promotion in Sen. of SVEB compared to [10].

C. BiRNN Evaluation

In order to show the significance of our BiRNN model and
to determine the optimal value of Lb(number of beats in each
beat group), we train models over the network configuration
with different Lb values. It should be noted that when Lb

equals 1, it means there is just one beat in each group and
BiRNN will be of no effect.

To find out the optimal value of Lb, we change it from 1
to 11 with interval of 2, and evaluate the models on data set
2 respectively. The results are shown in Figure 3, with Sen.
and Ppr. of VEB and SVEB focused.

It shows that as Lb increases, Sen. of SVEB remains
stable earlier and shows a downward trend then, while Ppr.
of SVEB first rises and then drops quickly. And it is clear
that the optimal value of Lb is 5, which is adopted in our



TABLE II
CLASSIFICATION RESULTS OF THE PROPOSED METHOD AND COMPARISON WITH FOUR ALGORITHMS FROM LITERATURE

Data Set Methods
VEB SVEB

Acc Sen Spe Ppr Acc Sen Spe Ppr

Data Set 1 Jiang and Kong[5] 98.8 94.3 99.4 95.8 97.5 74.9 98.8 78.8

Ince et al.[8] 97.9 90.3 98.8 92.2 96.1 81.8 98.5 63.4

Kiranyaz et al.[9] 98.9 95.9 99.4 96.2 96.4 68.8 99.5 79.2

Zhang et al.[10] 99.4 97.6 99.7 97.6 98.7 87.4 99.4 89.4

Proposed 99.6 98.4 99.7 98.0 98.4 92.9 98.7 83.6

Data Set 2 Jiang and Kong[5] 98.1 86.6 99.3 93.3 96.6 50.6 98.8 67.9

Ince et al.[8] 97.6 83.4 98.1 87.4 96.1 62.1 98.5 56.7

Kiranyaz et al.[9] 98.6 95 98.1 89.5 96.4 64.6 98.6 62.1

Zhang et al.[10] 99.6 97.5 99.8 97.9 98.9 86.7 99.5 89.0

Proposed 99.4 98.8 99.5 95.7 98.7 92.8 98.9 81.8

Data Set 3 Ince et al.[8] 98.3 84.6 98.7 87.4 97.4 63.5 99.0 53.7

Kiranyaz et al.[9] 99 93.9 98.9 90.6 97.6 60.3 99.2 63.5

Zhang et al.[10] 99.7 97.1 99.9 98.1 99.3 85.9 99.7 88.7

Proposed 99.6 98.8 99.6 95.5 99.1 92.7 99.3 80.2

Fig. 3. Sen. and Ppr. of VEB and SVEB for Different Number of Beats
in Each Beat Group

final model. In all, we can conclude that BiRNN is pretty
important for improving the beat classification performance.

V. CONCLUSIONS

In this paper, we firstly propose a novel end-to-end ECG
classification model based on Bidirectional Recurrent Neural
Network(BiRNN) and Convolutional Neural Network(CNN)
named as BiRCNN. We use CNN to extract interior morpho-
logical features of each beat, and the features of each beat are
considered in the context via BiRNN. Temporal features are
extracted by BiRNN. The experimental results obtained on
the MIT-BIH Arrhythmia Database show that our proposed
system achieves superior beat classification performance.
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