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Abstract— Detection of ECG characteristic points serves as
the first step in automated ECG analysis techniques. We
propose a novel end-to-end deep learning scheme called Region
Aggregation Network (RAN) for ECG characteristic points de-
tection. A 1D Convolutional Neural Network (CNN) is adopted
to automatically process ECG signals. A novel strategy of
Region Aggregation is proposed to replace the conventional
fully connected layer as regressor. Our work provides robust
and accurate detection performance on public ECG database.
The evaluation results of our method on QT database show
comparable detection accuracy compared with state-of-the-art
works.

I. INTRODUCTION

Automatic annotation algorithm of electrocardiogram
(ECG) has received wide attention because of its vital role
in clinical diagnosis of various cardiac diseases [1]. Most of
the useful clinical information of ECGs can be obtained from
various intervals and magnitudes of the ECG characteristic
points (the limits and peaks of QRS complex, P wave and T
wave).

The precise detection of ECG characteristic points is a
challenging task due to the large changes in ECG waveforms.
And there is currently no universal rule for determining the
range of individual component waveforms.

Traditional delineation methods include low-pass differ-
entiation (LPD) [2], hidden Markov models [3], spline rep-
resentation [4] and wavelet-based methods [5][6]. Among
them, wavelet transform is the most popular method. Inspired
by methods in [5], Martnez et al. developed a single-lead
ECG delineation system based on wavelet transform in [6].
The evaluation results on public ECG databases show accept-
able detection accuracy. P wave detection and delineation is
also achieved with phase free stationary wavelet transform in
[7]. However, the parameters of these methods often require
manual and empirical adjustment, which may significantly
effect the performance. Besides, they are often data-sensitive
and varying from different sources. Therefore, these methods
lack sufficient generalization ability.

In recent years, many machine learning methods have been
developed in ECG characteristic points detection. Saini et al.
in [8] proposed a K-Nearest Neighbor classification approach
for ECG recognition. Improved in [9] his K-NN with gradient
feature method was evaluated on multiple ECG databases.
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However, the K-NN method suffers from the curse of dimen-
sionality when the feature dimension is high, and the trained
K-NN classifier model is memory consuming since it needs
to store all of the training data. Based on partially collapsed
Gibbs sampler, Bayesian method was proposed in [10][11].
By exploiting the strong local dependency of ECG signals,
the method showed relatively high detection rate on QT
database. Gao et al [12] proposed randomly selected signal
pair difference (RSSPD) feature extracted from time domain
signals and used a random forest classifier and some post
processing to generate final results. The evaluation results of
their method on QT database show acceptable performance.
However, conventional machine learning methods demand
complex feature engineering. Besides, the feature extraction
and classification or regression process are performed sepa-
rately.

In this paper, we propose a novel end-to-end deep learning
based ECG characteristic point detection algorithm, named
as Region Aggregation Network (RAN). To our knowledge,
this is the first time that a deep learning method is presented
to detect ECG characteristic points. The RAN consists of
a 1D Convolutional Neural Network (CNN) and a novel
region aggregation module. The region aggregation module is
designed to replace the simple fully connected layers which
usually play the role of regressor. The whole network can be
trained elegantly by using stochastic gradient descent, which
means that the feature extraction and regression process are
preformed concurrently in our scheme. The evaluation results
of our algorithm achieve comparable performance with state-
of-the-art works on QT database [13].

II. FRAMEWORK AND PREPROCESSING
Fig. 1 shows the framework of our scheme. The ECG

signal is denoised to remove high frequency noise and
baseline wandering, as is described in section A. Then, the
denoised signal is segmented into individual beats which
will be fed into the CNN. After segmentation, we normalize
the segments according to the maximum and minimum
amplitude value in individual segment by

x′i =
xi

(Smax−Smin)
, i = 1,2, ...,L (1)

Where xi is the amplitude of i-th sample point in individual
segment, L is the length of the segment, Smax and Smin is
the maximum and minimum signal amplitude value. The
purpose of normalization is to make the model more robust
to variations of ECG amplitude. Then we resample each
segment to 325 since CNN can only take fixed size tensor
as input.



Fig. 1. The proposed Region Aggregation Network.

We use a 1D CNN and a novel region aggregation module
to extract features from single-beat ECG segments and gen-
erate the characteristic points concurrently. The network can
automatically learn the essential features in ECG waveforms
and avoid complicated manual feature extraction. We directly
use denoised ECG signal as input so that we may utilize
more information than using manually extracted features. In
the region aggregation module, the feature maps generated
by CNN are uniformly cropped into several regions and fed
into fully connected layers respectively as branches. Features
from the last FC layers of all regions are concatenated and
used to infer the positions with an extra regression layer.
The details of region aggregation and model architecture are
elucidated in section III.

Our scheme is divided into two stages: training and testing.
In the training stage, RAN takes ECG signal segment as input
and generates 8 positions (the begining, peak and end of P
wave and QRS complex, the peak and end of T wave). Then
we define a loss function to measure the distance between
generated positions and labels. We adjust all parameters
in RAN by minimizing the loss function with stochastic
gradient descent strategy. In the testing stage, we just feed
a segment into RAN and directly obtain 8 positions. In this
stage, only one time forward propagation is processed, which
means that the testing phase is computationally efficient. The
feature extraction and regression process can be performed
simultaneously without separation both in training and test-
ing stage.

A. ECG signal preprocessing

Inspired by [14], we apply a preprocessing method com-
bining wavelet-based denosing and median filtering. ECG
signals are decomposed into 11 scales using Dual-Tree
Complex Wavelet Transform (DTCWT). Information in scale
2 to 9 is retained to reconstruct the signals, and the others
are regarded as noise and set to zero. In order to remove
the baseline wander effectively, as in [15], a 200ms width
median filter removing P wave and QRS complex, then a
600ms width median filter removing T waves are used to fit
the baselines. Then we subtract the fitted baseline from the
denoised signal.

B. Segmentation and data augmentation

We apply DPI algorithm [16] to obtain all locations of
QRS peaks in each record and calculate an average RR

interval RRave. We use a series of window functions gi(x)
to segment the ECG waveform. The gi(x) is defined by

gi (x) =
{

1, |x− xi| ≤ 0.7×RRave
0, otherwise (2)

Where xi is the label of i-th QRS peak and x is position of
arbitrary sample point.

Due to the lack of available training data, data augmen-
tation is necessary. We implement data augmentation by
changing the window functions as

gi (x) =

1, 0≤ x− xi ≤ Rright ×RRave
1, 0≤ xi− x≤ Rle f t ×RRave
0, otherwise

(3)

We set the range of Rright and Rle f t between 0.5 and 0.8 and
apply uniformly random sampling. We repeat the segmen-
tation process for 30 times and ensure that Rright and Rle f t
are different each time. After segmentation, all segments are
resampled to 325. This augmentation strategy is equivalent
to implementing waveform translation, stretching and com-
pression. In addition, we also artificially add Gaussian noise
to the segments to improve the anti-interference ability of
our model.

III. REGION AGGREGATION NETWORK

As is shown in Fig. 1, we employ a 1D CNN and region
aggregation module to automatically extract features and
generate characteristic points. In this section, the details of
our network architecture and process of region aggregation
are described.

A. Network architecture

Our convolutional network consists of 22 convolutional
layers and 3 down sampling layers. Each convolutional layer
is followed by a batch normalization (BN) layer and a
Rectified Linear Unit (ReLU) activation function. We use
convolution layers with a kernel size of 2 and a stride of
2 instead of pooling layers to implement downsampling.
The architecture of our CNN is shown in Table. I.The input
size is 325× 1 and the output size is 21× 128. It is not
necessary to select 325 as input size, other values may also
be used as long as the used value is fixed in both training
and testing stage. The input is segmented single-lead ECG
signal and the output is a fixed-size feature map. In region
aggregation module, we use fully connected layers of size



TABLE I
NETWORK ARCHITECTURE

Layer Size
Input 325×1

16×5 conv, stride 1 325×16
16×5 conv, stride 1 325×16
16×5 conv, stride 1 325×16
16×5 conv, stride 1 325×16
16×5 conv, stride 1 325×16
Down Sampling 1 163×16

32×5 conv, stride 1 163×32
32×5 conv, stride 1 163×32
32×5 conv, stride 1 163×32
32×5 conv, stride 1 163×32
32×5 conv, stride 1 163×32

Down Sampling 82×32
64×5 conv, stride 1 82×64
64×5 conv, stride 1 82×64
64×5 conv, stride 1 82×64
64×5 conv, stride 1 82×64
64×5 conv, stride 1 82×64

Down Sampling 41×64
128×5 conv, stride 1 41×128
128×5 conv, stride 1 41×128
128×5 conv, stride 1 41×128
128×5 conv, stride 1 41×128
128×5 conv, stride 1 41×128
128×5 conv, stride 1 41×128
128×5 conv, stride 1 41×128

Down Sampling 21×128

256 and dropout with a keep rate of 0.5 in each branch.
The output features of all branches are concatenated into a
large vector and fed into an extra fully connected layer. The
output of the final fully connected layer is a vector of length
8, representing the positions of 8 ECG characteristic points
within a cardiac cycle. According to the length of segment
before and after resampling, we can calculate the positions
in original waveform by

p′i =
pi×325

lraw
, i = 1,2, ...,8 (4)

Where p′i is original position and pi is predicted position. lraw
is the length of segment recorded in segmentation process
before resampling.

B. Region aggregation

The region aggregation module is a tree-shaped fully
connected structure, containing multiple branches with the
same size. Different from the simple fully connected layers,
we evently divide the feature maps into N regions at the
end of CNN. For each region, we feed it into the FC layers
respectively as branches. Then features from the last FC
layers of all regions are concatenated and used to infer the
characteristic points with an extra regression layer, as is
shown in Fig. 1. The region aggregation module utilizes each
region to separately predict the positions of all characteristic
points and combine the results. Different regions in the
feature maps from CNN represent different regions of the
input ECG segment. This process is basically equal to a
kind of multi-view voting strategy [17], which takes multiple
different regions in the same ECG segment as inputs, then

averages all results generated from these regions. Compared
simple fully connected layer, region aggregation module can
more effectively extract the essential information according
to mutiple regions in the same signal, whcih means it can
achieve more robust performance. In order to restrict the
position in the segment, we use the hyperbolic tangent
function to limit the range of all elements of the output
variable from 0 to 324 by

x′ = (tanh(x)+1)×162 (5)

The whole network can be trained end-to-end by minimiz-
ing the regression loss. We set N = 3 to balance the trade-off
between performance and efficiency For each region we use
FC layers with the same size 256. We do not adopt multi-
scale regions because it will lead to imbalanced parameter
number in FC layers. Region aggregation can achieve similar
performance as multi-view voting, which means RAN is
more robust than simple CNN. End-to-end training allows the
model to automatically adjust the contributions of different
regions in the same signal to the final detection results. We
use concatenation instead of averaging in the last layer so
that the regressor can effectively utilize information from
different FC layers, making the model more powerful.

IV. EXPERIMENT

In this section we describe the experiments to evaluate our
method. We show both qualitative and quantitative results
on QT database, the detection accuracy is quantified and
compared with bayesian methods [10][11], wavelet transform
methods proposed in [6][7] and machine learning methods
in [12]. For comparison, we implement a baseline which
employs the same CNN architecture and simple FC layers
as regressor.

The QT database include 105 records chosen from existing
ECG database, including the MIT-BIH Arrhythmia Database,
ST-T Database and several other ECG databases. At least 30
beats in each record, 3622 beats in all, were manually anno-
tated in the database. The annotation includes the beginning,
peak and end of the P wave, the beginning and end of the
QRS complex, and the peak and end of the T wave. Since the
RAN has to accept a fixed-size input and generate a fixed-
size output, we only use records containing annotations of
eight points as testing or training set, accounting for 97 out
of 105. We divide the 97 records into two parts: training set
and test set, in which the training set contains 74 records
and the test set contains 23 records.

We perform 10 independent experiments with the test
and training sets randomly divided and take the average of
10 test results as the evaluation result. The performance is
measured by the average M and standard deviation SD of
error values, which indicates the detection accuracy of the
proposed method. For each expert label, the error is defined
as the distance between detection output and the current
expert label.

The comparison between our method and other studies are
provided in Table. II. As can be seen from the results, our



TABLE II
DETECTION ACCURACY ON THE QT DATABASE

Method Metric P-on P-peak P-off QRS-on QRS-off T-peak T-off

RAN(ours) M±SD (ms) 0.4±14.4 -0.4±10.1 -2.0±12.7 -0.7±10.9 -4.8±13.1 -3.0±10.5 -0.3±18.5
CNN(Baseline) M±SD (ms) 6.6±17.8 3.9±14.2 2.4±18.6 -0.3±14.0 -6.6±15.2 -4.5±17.2 -6.1±26.4

RSSPD([12]) M±SD (ms) 0.4±22.0 N/A 2.1±12.9 0.2±10.2 0.5±14.4 N/A 1.4±17.2

Beat-to-beat BGS([11]) M±SD (ms) 3.4±14.2 1.1±5.3 2.7±9.8 N/A N/A 0.8±4.1 -3.9±14.0

Multi-beat PCGS([10]) M±SD (ms) 1.7±10.8 2.7±8.1 2.5±11.2 N/A N/A 0.7±9.6 2.7±13.5

Phase free SWT([7]) M±SD (ms) -0.3±12.2 N/A 5.8±9.1 N/A N/A N/A N/A

WT([6]) M±SD(ms) 2.0±14.8 3.6±13.2 3.5±18.0 4.6±7.7 0.8±8.7 0.2±13.9 -1.6±18.1
1N/A indicates the statistics is not available.

Fig. 2. Accumulate percentage of detection error values and 90%
confidence interval (red lines).

method has achieved comparable performance with state-of-
the-art works. It proves the deep learning method is effective
in detection of ECG characteristic points.

The accumulate percentage of error values of the 10 test
rounds is shown in Fig. 2. The red lines in the figure indicates
the 90% confidence intervals. The solid curves of RAN
indicate that most of the error values of proposed method lies
within 20ms. Compared with the baseline, our RAN method
achieves a confidence interval performance improvement of
over 15 ms in most points’ detection. The experiments show
that our RAN has achieved a more stable detection effect
than simple CNN.

V. CONCLUSIONS

We have proposed a novel end-to-end deep learning
scheme called Region Aggregation Network to detect ECG
characteristic points. It is the first time deep learning method
is adopted in this field. The new architecture consists of a
1D convolutional network and a novel region aggregation
module. In training stage, we employ data augmentation
to make up for the lack of data in QT database. The
proposed scheme can detect ECG characteristic points with
high detection accuracy. It proves that deep learning method
is effective in analyzing ECG signals.

REFERENCES

[1] A. Gacek and W. Pedrycz, ECG signal processing, classification
and interpretation: a comprehensive framework of computational
intelligence. Springer Science & Business Media, 2011.
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