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Abstract

3D hand pose estimation is an important and challenging problem for human-computer interaction. Recently convo-
lutional networks (ConvNet) with sophisticated design have been employed to address it, but the improvement is not
so significant. To exploit good practice and promote the performance for hand pose estimation, we propose a Region
Ensemble Network (REN) for directly 3D coordinate regression. It first partitions the last convolutional outputs of
ConvNet into several grid regions. Results from separate fully-connected (FC) regressors on each regions are integrated
by another FC layer to perform estimation. By exploitation of several training strategies including data augmentation
and smooth L1 loss, REN significantly improves the performance of ConvNet for hand pose estimation. Experiments
demonstrate that our approach achieves strong performance on par or better than state-of-the-art algorithms on three
public hand pose datasets. We also experiment our methods on fingertip detection and human pose datasets and obtain
state-of-the-art accuracy.

Keywords: Convolutional Network, Hand Pose Estimation, Human Pose Estimation, Fingertip Detection, Ensemble
Learning, Depth Imaging

1. Introduction

3D hand pose estimation from depth images has drawn
lots of attention from researchers [1] [2] [3] due to its im-
portant role in applications of augmented reality (AR) and
human-computer interface (HCI) [4]. It aims to predict5

the accurate 3D positions for hand joints [5] from a single
depth image[6] [7], which is critical for gesture recognition
[8, 9, 10]. Though has been studied for several years [5],
it is still challenging owing to high joint flexibility, large
view variance, poor depth quality, severe self occlusion,10

and similar part confusion.
Recently, deep convolutional networks (ConvNets) have

exhibited state-of-the-art performance across several com-
puter vision tasks such as object classification [11], object
detection [12], and image segmentation [13]. ConvNets15

have also been employed to solve the problem of hand pose
estimation, often with complicated structure design such
as multi-branch inputs [14][15] and multi-model regression
[15] [16] [17] [18]. Thanks to the great modeling capac-
ity and end-to-end feature learning, deep ConvNets have20

achieved competitive accuracy for methods [19] [3], which
may result from the relatively shallow ConvNet structure
(often 3 - 5 convolution layers [14] [16] [18]) and high risk of
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overfitting with relative small datasets compared to image
classification.25

In this paper, we explore multiple good practices with
hand pose estimation in single depth images. Most impor-
tantly, inspired by model ensemble and multi-view voting
[11, 26], we present a single deep ConvNet architecture
named Region Ensemble Net (REN)1 (Fig.1) to directly30

regress the 3D hand joint coordinates with end-to-end op-
timization and inference. We implement it by training
individual fully-connected (FC) layers on multiple feature
regions and combining them as ensembles. In addition,
we adopt several approaches to enhance the performance35

including residual connection [20], data augmentation and
smooth L1 loss [21]. As shown in our experiments, REN
significantly promotes the performance of our ConvNet,
which outperforms state-of-the-art methods on three chal-
lenging hand pose benchmarks [14] [22] [19]. Evaluated on40

fingertip [14] and human pose benchmarks [23], our REN
also achieves the best accuracy.

This paper builds upon our preliminary publication
[24]. In this paper, we make extensions in following as-
pects: 1) Compared with [24], this paper describes more45

technical details and discusses several important factors
for good practice, leading to slightly better results than
[24] with different region settings. 2) We provide extensive
ablation studies of region settings, fully-connected layers
and model sizes. 3) We add results for one extra hand50

1Codes and models are available at https://github.com/

guohengkai/region-ensemble-network
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Figure 1: Region ensemble network (REN) with four regions: First
deep ConvNet is used to extract features of depth image. The feature
maps from ConvNet are then divided into regions. Each region is
finally fed into fully-connected (FC) layers and then fused to predict
the hand pose. The green rectangles represent the receptive field of
the top-left region on the feature maps.

pose dataset [19], and further evaluate our REN for fin-
gertip detection task on [14]. 4) We further apply our
REN for depth-based human pose estimation with state-
of-the-art performance, indicating the superiority of the
proposed REN in articulated pose estimation tasks.55

2. Related work

We briefly review relevant depth based hand pose esti-
mation methods with ConvNets, and examine methodolo-
gies related to the proposed algorithm, including ensemble
methods and multi-view testing for ConvNets. Finally we60

also introduce works using ConvNets for RGB-D finger-
tip detection and human pose estimation, which will be
compared in our experiments.

2.1. Hand pose estimation with ConvNets

Recently deep ConvNets have been applied on hand65

pose estimation from depth images. Tompson et al. [14]
first use ConvNets to produce 2D heat maps with multi-
scale inputs and infer the 3D hand pose with inverse kine-
matics. Oberweger et al. [15] directly regress the 3D joint
locations with multi-scale and multi-stage ConvNets using70

a linear layer as pose prior. In [16], a feedback loop is
employed to iteratively correct the mistakes of inference,
in which three ConvNets are used for pose initialization,
image synthesis and pose updating. Ge et al. [17] em-
ploy three ConvNets from orthogonal views to separately75

regress 2D heat maps for each views with depth projec-
tions and fuse them to produce 3D hand pose. In [25],
physical joint constraints are incorporated into a forward
kinematics based layer in ConvNet. Similarly, Zhang et al.
[18] embed skeletal manifold into ConvNets and train the80

model end-to-end to render sequential prediction.

2.2. Multi-model ensemble methods for ConvNets

Traditional ensemble learning means training multiple
individual models and combining their outputs via averag-
ing or weighted fusions, which is widely adopted in recog-85

nition competitions [26]. In addition to bagging [11] [27],

boosting is also introduced for people counting [28]. How-
ever, using multiple ConvNets for both training and test-
ing requires huge cost of memory and time, which is not
practical for applications.90

2.3. Multi-branch ensemble methods for ConvNets

Single ConvNet with the fusion of multiple branches
can also be regarded as a generalized type of ensemble.
One popular strategy is to fuse different scaling inputs [14]
[15] or different image cues [29] [30] [31] with multi-input95

branches. Another approach is to employ multi-output
branches with shared convolutional feature extractor, ei-
ther training with different samples [32] or learning to pre-
dict different categories [33]. Compared with multi-input
ensemble, multi-output methods cost less time because in-100

ference of FC layers is much faster than that of convolu-
tional layers. Our method also falls into such category, but
we apply ensemble on feature regions instead of inputs.

2.4. Multi-view testing for ConvNets

Multi-view testing is widely adopted to improve accu-105

racy for object classification [11] [34] [35]. In [11], pre-
dictions from 10-crop (four corners and one center with
horizontal flip) are averaged on single ConvNet. In [34]
[35], fully-convolutional networks are employed in testing
with multi-scale and multi-view inputs. Then spatially av-110

erage pooling is applied on the class score map to obtain
the final scores. To best of our knowledge, such strategy
has not been applied on 3D pose regression yet2.

2.5. RGB-D based fingertip detection and human pose es-
timation with ConvNets115

Fingertips play an important role in human-computer
interaction among the hand joints. Wetzler et al. [36] em-
ploy ConvNet for in-plane derotation of hand depth image
and then use random forests or ConvNets for fingertip co-
ordinate regression. Guo et al. [29] introduce a two-stream120

ConvNet to detect the 3D fingertips, which makes use of
both depth information and edge information with slow
fusion strategy.

Human pose estimation is also important for HCI ap-
plications such as action recognition [37] [38]. Though125

ConvNets are widely used in human pose estimation for
RGB images [39] [40], there are limited number of works
using ConvNets from depth images due to relatively small
size of training datasets. Haque et al. [23] introduce a
viewpoint invariant model using ConvNets and recurrent130

networks (RNNs) for human pose estimation. Local re-
gions from depth images are transformed into a learned

2Please note the difference between the term “Multi-view
testing”[35] and “Multi-view” methods (e.g. [17]). Multi-view test-
ing is a widely used strategy at test time that extracts several
cropped patches (e.g. 224 × 224) from the original image (e.g.
256 × 256) and averages the predictions from each patch. On con-
trast, the term “Multi-view” in [17] represents different images from
several cameras on different viewpoints.
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Figure 2: Structure of basic ConvNet for feature extraction. The
ConvNet consists of six convolutional layers and three pooling lay-
ers. The dotted arrows represent residual connections with dimen-
sion increase [20]. The non-linear activation layers following each
convolutional layers are not showed in the figure.

feature space via ConvNets and then RNNs are leveraged
to predict the offsets of pose sequentially with multi-task
setting.135

3. Region Ensemble Network

As in Fig.1, Region Ensemble Network (REN) 3 starts
with a ConvNet for feature extraction. Then the features
are divided into multiple grid regions. Each region is fed
into FC layers and learnt to fuse for hand pose estimation.140

In this section we introduce the basic network architecture,
region ensemble structure and implementation details.

3.1. Network architecture with residual connection

The architecture of our ConvNet for feature extraction
consists of six convolutional layers with 3×3 kernels (Fig.2)145

and three pooling layers with 2× 2 kernels. Each convolu-
tional layer is followed by a Rectified Linear Unit (ReLU)
activation. The ConvNet accepts a 96 × 96 depth image
as input and outputs the feature maps with dimension of
12× 12× 64. To improve the learning ability, two residual150

connections are adopted between pooling layers with 1×1
convolution filters for dimension increase as in [20]. So
there are totally eight convolutional layers in our model,
which is deeper than ConvNets in [18] with five layers.

For regression, we use two 2048 dimension FC layers155

with dropout rate [41] of 0.5 for each regressor to avoid
overfitting. The output of regressor is a 3× J vector rep-
resenting the 3D world coordinates for hand joints, where
J is the number of joints.

3.2. Region ensemble structure160

Multi-view testing averages predictions from different
crops of original input image, which reduces the variance

3We are aware that the term “ensemble” is commonly used to refer
to methods that aggregate the results over several models. Though
our proposed method has single model and strictly speaking it’s not
an “ensemble” method, it’s inspired by model ensemble and that’s
why we name it as “Region Ensemble Network”. In this paper we
still keep the name of “Region Ensemble Network” to be consistent
with our preliminary publication [24].

Figure 3: Different region setting for feature maps: four conners [24]
(left), four centers in each edges (middle), and multi-scale regions
with the same center (right). Proposed REN adopts nine regions
with size of 6 × 6 including the center of feature maps and all the
eight regions in left and middle figures.

Figure 4: Receptive fields for different region positions: (a) 62 × 62
for conners, (b) 62× 76 or 76× 62 for centers in each edges, and (c)
76× 76 for the center of feature maps.

for image classification [11]. Because image classification
is invariant to translation and cropping, multi-view test-
ing is easy to apply by directly cropping on the input im-165

age. When it comes to pose regression, each cropped parts
will correspond to different hand pose configurations. So
we should adapt the 3D coordinates of hand pose to the
cropped view. Meanwhile, using multiple inputs to feed
the ConvNet one-by-one is time-consuming.170

Because each activation in the convolutional feature
maps is contributed by a receptive field in the input im-
age domain, we can project the multi-view inputs onto the
regions of the feature maps. By using separate regions as
features, we can train separate regressors instead of single175

regressor. So multi-view voting could be extended to re-
gression task by utilizing each regions to separately predict
the whole hand pose and then combining the results.

Based on this inspiration, we define a tree-structured
network consisting of a single ConvNet trunk and several180

regression branches as shown in Fig.1. We first divide the
feature maps of ConvNet into several regions. For each re-
gion, we feed it into the FC layers respectively as branches.
There are several ways to combine different branches. A
simple strategy is bagging, which averages all outputs of185

branches using average pooling. In order to boost the pre-
dictions from all the regions, we employ region ensemble
strategy instead of bagging: features from the last FC lay-
ers of all regions are concatenated and used to infer the
coordinates with an extra regression layer. The whole net-190

work can be trained end-to-end by minimizing the regres-
sion loss.
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For region setting, we use nine regions with size of 6×6
located at four conners (left part in Fig. 3, which is also the
whole setting in [24]), four centers near the edges (middle195

part in Fig. 3) and the center of the feature maps. The
receptive fields of different regions within the 96×96 image
bounding are shown in Fig. 4, which is similar to the
corner and center crop in [11]. We will discuss the effect
of different region settings on accuracy in Section 4.3.2.200

There are three main differences between proposed meth-
ods and multi-view voting: 1) To our knowledge, all multi-
view testing methods before are designed for image classi-
fication while our region ensemble can be applied on both
classification and regression. By applying fusion FC layer205

in REN, different views of inputs are trained to simul-
taneously predict the same pose. 2) We adopt end-to-end
training for region ensemble instead of testing only, making
the ConvNet adjust the contributions from each views. 3)
We replace the average pooling with one FC layer on con-210

catenated features to learn the fusion parameters, which
increases the learning ability of the network. We will per-
form the comparison in Section 4.3.3.

3.3. Implementation details

We implement our REN with Caffe [42] written in C++.215

We use stochastic gradient descent (SGD) with a mini-
batch size of 128. The learning rate starts from 0.005
and is divided by 10 every 20 epochs, and the model is
trained for total 80 epochs. In the meanwhile, we use
a weight decay of 0.0005 and a momentum of 0.9. Our220

model is trained from scratch with random initialization
[43]. Moreover, there are three important strategies for
training: patch cropping, data augmentation, and smooth
L1 loss. The details are described below. And we will
show the incremental contributions of these strategies in225

later section.
Patch cropping For ConvNet inputs, we extract a cube
with fixed size of 150mm from the depth image centered
in the hand region. Then the cube is resized into a 96 ×
96 patch of depth values normalized to [−1, 1] as input230

for ConvNet. The 3D coordinates are also normalized to
[−1, 1] according to the cube. To compute the center, we
first segment the foreground with fixed thresholds and cal-
culate the centroid of foreground.
Data augmentation We apply online data augmenta-235

tion during training, including translation within [−10, 10]
pixels, scaling within [0.9, 1.1] and rotation within [−180, 180]
degrees. Random augmentation effectively increases the
size of training dataset, so it can improve the generaliza-
tion performance.240

Smooth L1 loss To deal with noisy annotations, we
adopt similar smooth L1 loss in [21]:

smoothL1(x, x̃) =

{
50(x− x̃)2 if|x− x̃| < 0.01
(|x− x̃| − 0.005) otherwise

(1)

where x is the predicted label and x̃ is the groundtruth.
Because it is less sensitive to outliers than the L2 loss, it245

can benefit the training of ConvNet.

4. Experiments

In this section, we first introduce the evaluation datasets
and metrics for our experiments. Then we compare our
REN with several state-of-the-art methods on public hand250

pose datasets. Next we explore several good practices of
training ConvNets for hand pose estimation, discuss dif-
ferent region settings and also compare with traditional
ensembles and multi-view testing. Finally we apply our
REN on fingertip detection and human pose estimation255

for public benchmarks.

4.1. Experiment setup

4.1.1. Datasets

We first conduct our experiments on three public depth-
based hand pose datasets: ICVL hand pose dataset [22],260

NYU hand pose dataset [14], MSRA hand pose dataset
[19]. For self-comparison, ICVL dataset is mainly used.
More details for these datasets are as follows:
ICVL dataset The training set of ICVL dataset con-
tains 300K images with different rotations, and the test-265

ing set contains 1.6K images. All the depth images are
captured by Intel RealSense. Totally 16 hand joints are
initialized by the output of camera and manually refined.
NYU dataset The NYU dataset has 72K images for
training and 8K for testing with 36 3D annotated joints,270

collected from Microsoft Kinect camera. Following [14], 14
hand joints with front-view image are used in experiments.
And this dataset is also used to evaluate fingertip detection
on the 5 fingertip joints in [36] [29].
MSRA dataset The MSRA dataset contains 9 subjects275

with 17 gestures for each subject. 76K depth images with
21 annotated joints are collected with Intel’s Creative In-
teractive Camera. For evaluation, each subject is alterna-
tively used as testing data when other 8 subjects are used
for training. This is repeated 9 times and the average280

metrics are reported.
To further demonstrate the power of REN, we evaluate

the fingertip detection task on NYU dataset [14]. What’s
more, without bells and whistles, we apply REN for depth-
based human pose estimation task on ITOP human pose285

dataset [23], see Section 4.4. The details of ITOP dataset
are as follow:
ITOP dataset The ITOP dataset consists 18K training
images and 5K testing images for front view and top view
acquired by two Kinect cameras. Each depth image is290

labelled with fifteen 3D joint locations of human body.

4.1.2. Evaluation metrics

We employ different metrics for hand pose estimation
and human pose estimation following the literatures [22]
[14] [23]. For hand pose, the performance is evaluated by295

two metrics: 1) average 3D distance error is computed
as the average Euclidean distance for each joint (in mil-
limeters). 2) percentage of success frames is defined
as the rate of frames in which all Euclidean errors of joints
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are below a variant threshold [15]. In addition, mean pre-300

cision (mP) with a threshold of 15mm as defined in [36] is
calculated for fingertip detection.

For human pose, we compute the mean average pre-
cision (mAP) [23], which is defined as the average de-
tected rate for all human body joints. A joint is counted as305

detected when the Euclidean distance between predicted
position and ground truth is below 10cm.

4.2. Comparison with the state of the art

We compare our methods against several state-of-the-
art approaches on ICVL dataset [22] [15] [19] [25] [3] [44],310

NYU dataset [14] [15] [16] [1] [17] [25] [18] [44] [45], and
MSRA dataset [19] [46] [17] [3] [44] [45]. Overall, Fig.5 -
Fig.7 show that proposed REN obtains the best accuracy
among all the algorithms for hand pose estimation.

In details, on ICVL dataset our method surpasses other315

methods with a large margin. And the mean error 7.31mm
obtains a 0.80mm decrease compared with LSN [3], which
is a 9.87% relative improvement. Similarly on NYU dataset,
our results are more accurate (12.69mm) than other ap-
proaches, and reduce the error of [18] by 10.3%. For MSRA320

dataset, our algorithm achieves similar performance with
3DCNN [45] and significantly outperforms all other state-
of-the-art methods for nearly all thresholds, with an av-
erage error of 9.79mm. Surprisingly, it reduces the mean
error of [17] by 25.7%. Note that either LSN [3] or multi-325

view ConvNets [17] employ multiple models with compli-
cated design and 3DCNN [45] uses 3D volumetric repre-
sentation, while our REN only uses single model and 2D
CNN without multi-stage regression, which indicates the
power for the proposed region ensemble strategy. Fig. 9330

shows some good cases and bad cases for all datasets. We
can find that the failure cases are often caused by severe
occlusion and bad depth images.

For MSRA dataset we also report the average joint er-
rors distributed over all yaw and pitch viewpoint angles335

as in [19] and [17], shown in Fig. 8. On all angles our
method outperforms [19, 17] and achieves comparable ac-
curacy with 3DCNN [45]. Our method still get consider-
ably good results for large viewpoints, which indicates the
robustness for viewpoint variance.340

4.3. Self-comparison

We perform self comparison experiments for different
strategies and setting of region ensemble network on ICVL
dataset [22].

4.3.1. Exploration study345

In this section, we focus on the investigation of good
practices. Specifically, we incrementally introduce five strate-
gies on a basic shallow network in Fig. 10: 1) adding one
convolution layer after each convolution layer to increase
the depth of ConvNet. 2) adding residual connection edges350

across pooling layers as described in Section 3.1. 3) using

Figure 10: Structure of basic shallow ConvNet with three convolu-
tion layers and three pooling layers. The non-linear activation layers
following each convolution layers are not showed in the figure.

Table 1: Average 3D distance error (mm) of incremental strategies
on ICVL dataset [22]. Lower is better.

Strategy Error(mm)
Shallow 10.48

+Deeper 10.02
+Residual Edge 9.73
+Smooth L1 Loss 8.59
+Augmentation 8.36
+Region Ensemble 7.31

smooth L1 loss [21] instead of Euclidean L2 loss for re-
gression optimization. 4) augmenting the input patches as
described in Section 3.3. 5) proposed region ensemble.

The experimental results are summarized in Table 1.355

Combining all the strategies reduces the errors by 3.17mm
(relative 30.2%), which is a significant improvement of ac-
curacy. Among them, L1 loss and region ensemble are two
most important factors for performance boosting, because
L1 loss is more suitable for labels with relative large noise360

and region ensemble can help improve the generalization
for model.

Qualitative comparison on ICVL dataset are shown in
Fig.11 for region ensemble (second row, corresponding to
the sixth row in Table 1) and basic network (third row,365

corresponding to the fifth row in Table 1). The estima-
tions are more accurate for region ensemble especially for
fingers.

4.3.2. Region setting

According to the analysis in Section 3.2, different re-370

gion partitions are equal to different patterns of multi-view
inputs. Here we explore the effect of different settings of
regions, including: 1) Multi-scale: multi-scale regions
with three regions of size 12× 12, 8× 8 and 4× 4, which is
similar to multi-scale inputs as in [14] [15]. 2) 4× 6× 6:375

four regions of size 6×6 (left parts in Fig. 3), which is the
setting in [24]. 3) 9×6×6: nine regions of size 6×6 (four
as left parts, four as middle parts in Fig. 3 and one in the
center), which is the setting in this paper. 4) 9× 4× 4:
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Figure 5: Comparison with state-of-the-arts (LRF [22], DeepPrior [15], Cascaded [19], Model [25], LSN [3] , CrossingNets [44]) on ICVL [22]
dataset: distance error (left) and percentage of success frames (right).
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Figure 6: Comparison with state-of-the-arts (HeatMap [14], DeepPrior [15], Feedloop [16], DeepHand [1], Multi-view [17], Model [25],
Manifold [18], CrossingNets [44], 3DCNN [45]) on NYU [14] datasets: distance error (left) and percentage of success frames (right).

nine regions of size 4× 4 with similar positions as (3). 5)380

9×8×8: nine regions of size 8× 8 with similar positions
as (3). 6) 9× 6× 6+multi-scale: Combination of nine
regions of size 6 × 6 as (3) and multi-scale regions as (1),
resulting in totally 12 regions.

Results for different settings can be seen in Fig. 12. Re-385

gions with same size are significantly more accurate than
multi-scale regions due to the balance parameter number
for FC layers of different regions. And more regions with
moderate size (i.e. 9× 6× 6) obtain slightly better perfor-
mance. Too large or too small receptive field (i.e. 9×4×4390

and 9×8×8) hurts the accuracy of hand pose estimation.
Combination of 9× 6× 6 and multi-scale regions does not
further improve the performance. We empirically conclude
that the regions setting with 9 × 6 × 6 is a better choice
for REN, with a good balance of receptive field and region395

number.

4.3.3. Comparison with ensembles and multi-view testing

We compare with traditional ensembles and multi-view
testing in this section. In details, we implement three base-

lines: 1) Basic network has the same convolution structure400

in Fig.2 and single regressor on the full feature map with
two FC layers of 2048 dimensions. 2) Basic Bagging net-
work has nine basic networks as (1) that trained indepen-
dently on the same data with different random order and
augmentation. The average predictions of all the networks405

form the final prediction. 3) Multi-view Testing trains sin-
gle basic network as (1) but averages the predicted 3D
hand poses with nine multi-view inputs. The inputs are
cropped as in Section 3.3, but on different centers with
bias of −d/0/dmm on their x and y coordinates relative to410

the centroid. We use d = 26.5625 to approximately match
the nine region positions in REN.

Results in Fig.13 shows that ensemble based methods
(both basic bagging and region ensemble) are significantly
more effective that baseline network. And the performance415

of our region ensemble is much better than traditional bag-
ging. Because REN only employs multiple FC layers in-
stead of multiple complete ConvNets, it also costs less time
and memory than traditional bagging. Meanwhile, the im-
provement from multi-view testing is limited for hand pose420
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Figure 7: Comparison with state-of-the-arts (Cascaded [19], CF [46], Multi-view [17], LSN, LSN(Classify), LSN(joint) [3], CrossingNets [44],
3DCNN [45]) on MSRA [19] datasets: distance error (left) and percentage of success frames (right).
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Figure 8: The average joint errors distributed over all yaw/pitch viewpoint angles on MSRA [19] dataset. Cascaded [19], Multi-view [17],
3DCNN [45].

estimation, because the model is more sensitive to trans-
lation in regression tasks than that in classification.

4.3.4. Model size and run time analysis

In this section we discuss how the number of parame-
ters (model size) affect the accuracy and run time.425

Firstly we will demonstrate that the performance im-
provement of proposed REN is not purely due to larger
model size but actually due to our propose region ensem-
ble strategy. We compare REN with a network that have
more dimensions in FC layers so that it has the same model430

size with proposed REN. More specifically, when compar-
ing to REN with 4×6×6 region setting (REN-4×6×6), we
use 8192 dimensions in the second FC layer in Basic Large
network (denote this network as Basic Large-1). Similarly,
when comparing to REN-9×6×6, we increase the dimen-435

sions of two FC layers as 4608 and 8192 (denote as Basic
Large-1) respectively to ensure similar number of param-
eters to REN. The mean joint error on ICVL dataset of

different methods and the corresponding model size are
shown in Table 2. Larger model size for basic network440

can lead to slightly better performance. However, the pro-
posed REN outperforms the basic large network that has
same number of parameters to REN. REN-4 × 6 × 6 still
perform much better than Basic-Large-2 even though REN
has much smaller model size. These observations convince445

the contribution of the proposed region ensemble struc-
ture.

Furthermore, we also compare the run time perfor-
mance of our method and the basic network. We run the
experiments on a Nvidia Titan X GPU and report the450

forward time of different networks on GPU, as shown in
Table 2. Our propose REN takes slightly more time but
still sufficiently fast for real-time applications.

4.3.5. Influence of fully connected (FC) layer

Fully connected (FC) layers are critical for hand pose455

regression from convolutional features. In this section we
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Figure 9: Example results on ICVL [22], NYU [14] and MSRA [19] datasets: ground truth (first row) and region ensemble network (second
row) for each datasets.

Table 2: Model size and run time analysis.

Methods Mean Error (mm) Model Size (MB) GPU time (ms)
Basic 8.36 93 0.21

Basic Large-1 8.18 137 0.22
REN-4× 6× 6 7.47 137 0.31

Basic Large-2 7.89 309 0.24
REN-9× 6× 6 7.31 309 0.47

will discuss how different configurations of FC layers (e.g.
different number of feature channels, shared weights be-
tween different branches) affect the final performance of
REN.460

First we explore the influence of different dimensions
for FC layers. As described in Section 3.1, we use two
FC layers with 2048 nodes for each regressor. We change
the dimensions of the FC layers to 512, 1024, 3072, 4096
respectively and compare the mean errors as well as the465

model sizes, as shown in Fig.14. Using FC layers with
512 dimensions results in quite small model size. Never-
theless, REN still get considerable good results which are
even slightly better than several existing methods. This
observation indicates that REN produces quite discrim-470

inative features that can enable good performance even
with small dimensions of FC layers, which demonstrates
the superiority of REN. Increasing the FC dimensions to

a rather big scale does not further observably improve the
performance, but dramatically increases the model size.475

To balance the model complexity and accuracy, we choose
the dimension of FC layers as 2048.

Furthermore, we explore whether sharing the weights
of FC layers in different branches of REN helps to improve
the performance. As shown in Fig.14, sharing the weights480

of FC layers hinders the accuracy of hand pose estimation.
This is likely due to the fact that different FC layers of
each region focus on different aspects of the hand pose
and implicitly impose constraints on hand pose estimation.
Therefore, separately regressing on each regions using FC485

layers and integrating them in the following layer help to
improve the performance.
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Figure 11: Example results on ICVL [22] dataset: ground truth (first row), basic network (second row, corresponding to the fifth row in Table
1), and region ensemble network (third row, corresponding to the seventh row in Table 1).
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Figure 12: Comparison of different region settings (region number × region width × region height, multi-scale) for percentage of success
frames on ICVL dataset [22]. The right figure is zoomed in from the blue region in the left figure.

4.4. Evaluation on other tasks

Here we also test our REN on challenging benchmarks
for fingertip detection and human pose estimation and490

compare with state-of-the-art methods.

4.4.1. Fingertip detection

We compare the fingertip detection results to several
state-of-the-art algorithms [36, 29] on NYU dataset with-
out retraining our REN model. Table 3 illustrates that our495

REN achieves the best performance among all the meth-
ods, with an average error of 15.6mm.

4.4.2. Human pose estimation

The results for human pose estimation are reported in
Table 4, where we compare our method with RTW [47]500

and REF [23] using mAP metric on ITOP dataet. For

Table 3: Mean precision (mP) and average 3D distance error (mm)
for fingertips of different methods on NYU dataset [14]. Higher is
better for mP and lower is better for error.

Methods mP Error(mm)
CNN-DeROT [36] 0.63 -
DeepPrior [15] 0.43 26.4
FeedLoop [16] 0.38 23.2
TwoStream [29] 0.50 19.3

Model [25] 0.40 24.4
REN (Ours) 0.66 15.6

frontal view, proposed REN with 84.9 mAP significantly
outperforms RTW and REF. And the accuracy for lower
body is much higher. For top-down view, our method is
better than RTW and shows comparable performance with505
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Table 4: Mean average precision (mAP, unit: %) of different methods on frontal view and top view of ITOP dataset [23] using a 10cm
threshold. Higher is better.

mAP (front-view) mAP (top-view)
Body Part RTW [47] REF [23] REN (Ours) RTW [47] REF [23] REN (Ours)

Head 97.8 98.1 98.7 98.3 98.1 98.2
Neck 95.8 97.5 99.4 82.2 97.6 98.9

Shoulders 94.1 96.6 96.1 91.8 96.1 96.6
Elbows 77.9 73.3 74.7 80.1 86.2 74.4
Hands 70.5 68.6 55.2 76.9 85.5 50.7
Torso 93.8 85.6 98.7 68.1 72.9 98.1
Hips 80.3 72.0 91.8 55.7 61.1 85.5
Knees 68.8 69.0 89.0 53.9 51.6 70.0
Feet 68.4 60.8 81.1 28.6 51.5 41.6
Mean 80.5 77.2 84.9 68.5 75.5 75.5
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Figure 13: Comparison of ensembles and mutli-view testing for per-
centage of success frames on ICVL dataset [22].

REF, which contains deeper ConvNets with 16 convolution
layers in their models. See Fig. 15 for some visualization
results.
Implementation details For human pose, a small Con-
vNet is trained to predict the torso position as center. We510

extract a 3D cube with fixed size from the depth image
and resize it into 96 × 96 image patch, similarly to the
pre-processing procedure for hand pose. To better seg-
ment the body and remove useless objects in background,
the size of cube is 800 × 1200 × 800mm3 for front-view515

and 600× 600× 1000mm3 for top-view. Note that we use
ITOP-top-view and ITOP-side-view as separate datasets
and conduct experiments on them respectively. For data
augmentation, random flip of image with probability of 0.5
is also used.520
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Figure 14: Comparison of different configurations of fully connected
(FC) layer (dimensions, shared weights) on ICVL dataset [22].

5. Conclusion

To boost the performance of single ConvNet for 3D
hand pose estimation, we exploit several good practices
and present a simple but powerful region ensemble struc-
ture by dividing the feature maps into different regions525

and jointly training multiple regressors on all regions with
fusion. Such strategies significantly improve the accuracy
of ConvNet. The experimental results demonstrate that
our method outperforms all the state-of-the-arts on three
hand pose datasets and one human pose dataset. Since re-530

gion ensemble is easy to be introduced into ConvNets, we
believe that proposed structure could be applied on more
computer vision tasks and achieve more promising results.
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Figure 15: Example results on ITOP [23] dataset.
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