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ABSTRACT

Focus stacking is a promising technique to extend depth of
field in general photography by fusing images captured at d-
ifferent focusing distances. In this paper, we propose a round-
trip scene-adaptive image acquisition system to automatically
capture focal stack and fuse a high quality all-in-focus image.
Based on scene analysis, we cover entire depth range of the
scene in the forward optical scanning and refine all objects’
focusing positions accurately in the backward scanning. With
captured images, we firstly extract depthmap and all-in-focus
image with combination of max-gradient flow and blur ker-
nel estimation. Secondly, a superpixel-level Gaussian Fitting
is proposed to determine the next location to capture. Exper-
iments on simulated data show that our method attain high
quality all-in-focus image with fewer captured images.

Index Terms— all-in-focus; image acquisition; max-
gradient-flow; superpixel; Gaussian-Fitting

1. INTRODUCTION

In general photography, optical lenses have limited depth of
field (DOF): they usually focus on specific planes while leav-
ing other regions of the scene blurred[1]. To extend DOF of a
single image, focus stacking has become more and more pop-
ular with the development of digital imaging technology[2,
3]. It captures a sequence of images focused at differen-
t planes and fuses them into a single all-in-focus image.

Most researches focus on how to reconstruct all-in-focus
images more accurately[4, 5, 6]. However, how to capture
images more effectively has not received much attention.
In most literature about all-in-focus image reconstruction,
source images of focal stack are captured simply with e-
qual interval[7, 8, 9]. In these methods, source images are
captured moving the optical lens a uniform step-size, which
might lead to images which contain nothing in focus and
increase the complexity of image fusing. Hasinoff et al.
[10, 11, 12] constructed a model of exposure level and DOF
and discussed how to select sets of images quickly with a
given depth of field, but they ignored camera overhead and
the post-processing for image fusion. Vaquero at al. [13] pre-
sented an end-to-end system to select minimal sets of images
for focus stacking. David Choi [14] proposed enhancement
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of the proposal by Vaquero and improved image selection
on cameras with variable apertures and lenses with longer
focal lengths. However, in these methods, image selection
is based on scene distribution estimated by stream of low-
resolution images densely captured beforehand. Therefore
they separated image capturing and scene analysis, and led
to the limitation of image capturing efficiency and increase
of complexity of image fusing. Kuthirummal et al. [15] p-
resented another image capturing technique called as Focal
Sweep Imaging (FSI) to extend the DOF, where the sensor
moved along the optical axis during one exposure. But the
transform-domain-based method is sensitive to perturbation
of transform coefficients for lack of analysis of the scene.

In this paper, a novel scene-adaptive image capturing
system is proposed to improve efficiency for focus stacking.
There are three main contributions in our method. Firstly,
we propose a image acquisition system, for the first time, to
capture focal stack at scene objects’ optimal locations with
only one round-trip lens scanning. We move the optical lens
simply forward and backward to determine optimal captur-
ing positions. With captured images, online scene analysis
is proceeded to estimate depth distribution of the scene and
determine the next location to capture. In this way, we would
increase acquisition efficiency and practicability to recon-
struct a high quality all-in-focus image with fewer images.
Secondly, we present a novel sparse depthmap estimation
method utilizing max-gradient flow and blur kernel estima-
tion jointly with sparse focal stack. Thirdly, we present a
superpixel level Gaussian Fitting method to determine the
image acquisition locations. Experiments on simulated data
show that our method reconstruct accurate all-in-focus image
while reducing the number of captured images.

2. OUR PROPOSED CAPTURING SYSTEM

In our one round-trip capturing system, we move optical lens
along two different one-way directions: forward firstly and
backward secondly. We cover entire depth range of the scene
efficiently in the forward scanning and refine focusing posi-
tions of all objects in the scene as accurately as possible in
the backward scanning. Here we introduce framework of our
image acquisition system shown as Fig.1 in detail. In the for-
ward scanning, the optical lens moves from near to far and
the image acquisition approach proceeds as follows: Initially,
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Fig. 1: Pipeline for our proposed capturing system

the image acquisition positions are set as P0 = [L0, L1, L2]
where L0 represents the nearest captured position while L1 =
L0 + τmax, L2 = L0 + 2τmax. Defined as maximum acqui-
sition interval, τmax is set to cover entire depth range of the
scene more efficiently. We capture images at these captured
positions and estimate sparse depthmap d̃, dense depthmap d
and all-in-focus image FI with the captured sparse focal s-
tack to understand the captured scene. Detailed calculation
process would be explained in Section 3. Then we propose
superpixel-level Gaussian Fitting to estimate entire scene’s
focusing position distribution, which would be utilized to de-
termine the next position to capture to update image acqui-
sition positions. After the optical lens moves to the farthest
position, it moves backward from far to near and the back-
ward scanning process begins with acquisition positions set
containing captured positions Pm. The second image acqui-
sition scanning is proceeded similarly, except for the module
of capturing location decision: we introduce smaller acqui-
sition interval τmin to refine focusing positions of scene ob-
jects as accurate as possible. Specific details about capturing
position decision would be explained in Section 4. In this
way, we automatically capture a minimal set focal stack with
the round-trip scene-adaptive by fusing the scene analysis and
image acquisition.

3. ALL-IN-FOCUS GENERATION

For the ith image in the captured focal stack, the pixel val-
ue I(x, y) can be modeled as a convolution of a sharp point
F (x, y) with the point spread function (PSF) which could be
approximated by a Gaussian function G(x, y, σi(x, y)) [16],
and the blurred-point I(x, y) could be given by:

I(x, y) = F (x, y)⊗G(x, y, σi(x, y)) +N(x, y), (1)

where N(x, y) is the white noises of pixel (x, y).
In this section, we introduce how to estimate sparse

depthmap with combination of max-gradient flow and blur
kernel estimation. Then an all-in-focus image would be re-
constructed with already-captured focal stack.

3.1. sparse depthmap with max-gradient flow

In our previous work [4], we utilized max-gradient flow to
do all-in-focus composition. In the next few paragraphs, we
mainly give additional analysis on its applicability to the
scene-adaptive captured focal stack.

Max-gradient flow was proposed in [4] to model the prop-
agation of edges in focal stack:

MGF (x, y) =

 max
j
Gj(x+∆x,y)−max

i
Gi(x,y)

∆x
max
k

Gk(x,y+∆y)−max
i
Gi(x,y)

∆y

 . (2)

Here Gi(x, y) is the gradient value of pixel (x, y) in the ith
image in the stack. This flow describes the propagation of gra-
dients in the stack and is valid to extract edges with true depth
values as source points but has several disadvantages if the s-
tack is captured badly. Firstly, if capturing range of stack does
not cover object’s actual focus position, max

i
Gi(x, y) might

not represent true max gradient of pixel (i, j). This would
lead to missing of true source points. Secondly, if images are
captured too densely, largest image gradients are difficult to
contrast due to the effects of N(x, y). This would increase
computational complexity and bring depth noises.

In our method, since the focal stack is captured based
on the scene, we would find most accurate depth position
D(x, y) for each pixel. This position only depends on depth
distribution of scene, independent of specific acquisition lo-
cation of already-captured stack and would be determined
based on Gaussian-Fitting in section 4.2 . Then we capture
images at location D(x, y) and calculate its max gradient as
GD(x,y)

(x, y) instead of max
i
Gi(x, y) and modify Eq.2 as:

MGF (x, y) ==

 GD(x,y)
(x+∆x,y)−GD(x,y)

(x,y)

∆x
GD(x,y)

(x,y+∆y)−GD(x,y)
(x,y)

∆y

 . (3)

Therefore, on the occasion of scene-adaptive image acquisi-
tion, we cover actual focusing positions for all objects in the
scene. In this way, we would extract true source points as
many as possible while reducing depth noises.



3.2. sparse depthmap with blur kernel estimation

In this section, we utilize the method proposed by [16] to es-
timate blur kernel σi(x, y) to filter our sparse depthmap

We re-blur the ith captured image using a known Gaus-
sian kernel σ0, then the maximum ratio between the gradient
magnitude of Ii(x, y) and its re-blurred version would be cal-
culated as:

Ri(x, y) =
∇Ii(x, y)
∇I ′i(x, y)

=

√
σi(x, y)

2
+ σ0

2

σi(x, y)
2 . (4)

And the blur kernel of pixel (x, y) in the ith captured im-
age would be calculated. Since the accurate focusing position
of pixel (i, j) possesses the smallest blur kernel, we reserve
source points with blur kernels smaller than parameter σth to
filter our sparse depthmap from last section.

After generating accurate sparse depthmap d̃ we propa-
gate depth values from edge locations to entire image to ob-
tain dense depthmap d by matting Laplacian[3] with parame-
ter λ. This method considers fidelity to the sparse depthmap
as well as smoothness of propagation. Finally, we reconstruct
the all-in-focus image based on dense depthmap as follows:

FI(x, y) = Id(x,y)(x, y), (5)

4. CAPTURING LOCATION ESTIMATION

We have discussed in the last section about how to gener-
ate dense depthmap as well as all-in-focus with several cap-
tured images. In this section, in turn, we introduce how to
update capturing positions accurately. Firstly, we propose a
superpixel-leveled Gaussian-Fitting method to estimate actu-
al focusing positions of objects to analyze depth distribution
of the whole scene. Secondly, we introduce how to determine
new location to capture one at a time.

4.1. superpixel leveled Gaussian Fitting

In this section, we propose a RGB-D based superpixel seg-
mentation method and design a superpixel-leveled Gaussian
Fitting to estimate optimal focusing positions for each super-
pixel. SLICO method [17] performs satisfying in traditional
superpixel segmentation method and inspired our work. Con-
sidering the dense depthmap d from last section, we modify
the method and combine color distance in lab space of FI , s-
patial distance in xy space and depth value distance in d space
into a single measure D′ of overall proximity for superpixel
segmentation as follows:

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2
ds =

√
(xj − xi)2 + (yj − yi)2

dv =
√

(dj − di)2

D′ =
√
( dcNc )

2 + ( dsNs )
2 + ( dvNv )

2

(6)

After we produce the superpixel set [S1, S2, ...SM ] con-
taining [n1, n2, ..., nM ] source points respectively, we calcu-
late superpixel-leveled gradient as follows:

SGij =
1

ni

∑
(x,y)∈Si

Gj(x, y), (7)

where i indicates superpixel index ∈ [1, ...,M ] and j repre-
sents the capturing positions.

This equation denotes that we calculate superpixel-leveled
gradients by the average gradients of all source points the su-
perpixel contains and it records gradient values on already-
captured positions. Since we consider depth value distance in
our proposed RGB-D based superpixel segmentation, source
points in one superpixel would have the same focusing posi-
tion. Therefore it would be efficient and robust to estimate
accurate capturing positions by curve fitting on the superpixel
level.

Here we assume that the image gradients satisfy Gauss
distribution across different capturing locations with the
scene-constant standard deviation as follows:

SGij = SGiSDie
− (j−SDi)2

2σ2 , (8)

where σ indicates gradient standard deviation and determines
image minimum acquisition intervals and SDi is the depth
location with max gradient of superpixel SGi. Here we set
minimum acquisition intervals τmin in the backward scanning
as 2σ. Therefore we apply Gaussian Fitting on superpixel-
leveled discrete gradient values to update minimum acquisi-
tion intervals as well as to estimate accurate focusing posi-
tions for each superpixel. We then generate focusing positions
distribution curve C(j) as follows:

C(j) =

M∑
i=1

δ(SDi = j), (9)

which records the most accurate focusing position for all su-
perpixel and would be analyzed to estimate new positions to
be captured in the following section. Here δ is the Kronecker
delta while i, j indicates superpixel index and capturing loca-
tions respectively.

4.2. capturing position decision

In this section, we would introduce how to determine next
position to be captured by analyzing focusing position dis-
tribution curve. For the forward scanning, if the acquisition
position set P = [L0, L1, ..., Lk], the searching approach pro-
ceeds as Algorithm 1. HereNsup is the threshold to select the
next acquisition position and is set as M/100. We choose
l which is the first position farther than Lk and containing
focused superpixels more thanNsup as the position to be cap-
tured in the forward scanning. In the forward scanning, Gaus-
sian Fitting might produce false capturing locations due to



Algorithm 1 acquisition position searching of forward scan-
ning

1: Initialize position to be captured as l = Lk + 1 and cal-
culate acquisition distance d = l − Lk

2: while Acquisition distance is smaller than τmax and num-
ber of superpixel with focusing position l is smaller than
Nsup,i.e., d < τmax and C(l) < Nsup do

3: Update position to be captured, l = l + 1
4: Update acquisition distance, d = d+ 1
5: end while
6: The next capturing position l

sparsity of already-captured positions. Therefore we set max-
imum acquisition interval τmax to avoid especially far focus-
ing positions and ensure the entire depth range of scene would
be covered in the forward scanning.

For the backward scanning, the optical lens moves from
far to near. Different from the forward scanning, we add min-
imum acquisition interval τmin to avoid capturing focal stack
too densely. It means that every two adjacent acquisition po-
sitions are no less than τmin to improve capturing efficiency.
To smooth focusing position distribution curve, we modify
C(j) to:

C ′(j) =

τmin∑
n=−τmin

C(j + n). (10)

Since we have estimated depth distribution of all objects of
the scene in the forward scanning, the Gaussian Fitting would
produce more robust and accurate focusing positions. There-
fore the parameter τmax is eliminated in the backward scan-
ning. If the acquisition position set P = [L0, L1, ..., Lk], the
searching approach proceeds as Algorithm 2:

Algorithm 2 acquisition position searching of backward s-
canning

1: Initialize position to be captured as l = Lk − 1
2: Set flag = 0
3: while flag = 0 do
4: Calculate minimum distance between location l and set

P : d = mini |Li − l|
5: ifC ′(l) is larger thanNsup and distance d is larger than

τmin,i.e. C ′(l) > Nsup and d ≥ τmin then
6: set flag = 1
7: else
8: update l = l − 1
9: end if

10: end while
11: The next capturing position l

5. EXPERIMENTS

5.1. Setup

To evaluate performance of our proposed method, we utilize
two groups of simulated datasets: focal stack reconstructed by
New Standard Light Field Archive [18] and Training set of 4D
Light Field Benchmark[19]. Each group of focal stack con-
tains 200 images which are used to reconstruct all-in-focus
image for state-of-the-art methods. And the parameter of our
experiments are set as belows: while parameters of others are
set accordingly. λ = 4, τmax = 20, τmin = 3, σ0 = 0.9,
σth = 1, M = 400, Nsup = 4.

5.2. Overall Performance

In this section,we compare our method on simulated datasets
with DWT-based method[7], MGF-ARF method[4], DMGF-
Laplacian method[5] and FSI-based method[15] by SSIM
value. SSIM values and numbers of captured images each
method used are presented in Table 1. Compared with
DMGF-Laplacian based method, we could find that our
method achieves comparable scores with only 20% of im-
ages. Compared with other state-of-the-art methods, our
method achieves higher SSIM value with only 20% images as
well. Therefore our scene-adaptive image acquisition system
could get high-quality all-in-focus image with fewer images.

Table 1: SSIM of different methods on synthesized data

ours-num
MGF
200

DMGF
200

DWT
200

FSI
200

card 0.958-36 0.946 0.958 0.936 0.759
truck 0.954-24 0.942 0.956 0.950 0.855
chess 0.933-42 0.898 0.933 0.905 0.825

knights 0.866-38 0.835 0.865 0.795 0.668
treasure 0.959-31 0.911 0.965 0.830 0.716

bulldozer 0.945-28 0.913 0.949 0.860 0.771
boxes 0.976-33 0.962 0.977 0.966 0.917
cotton 0.992-31 0.970 0.992 0.988 0.960
dino 0.993-34 0.973 0.993 0.979 0.938

sideboard 0.968-38 0.942 0.969 0.953 0.844

6. CONCLUSION

In this paper, we propose a round-trip scene-adaptive image
acquisition system to automatically capture a minimal set of
images focused at depth planes of all scene objects to fuse a
high quality all-in-focus image. We fuse the image capturing
and scene analysis to improve image acquisition efficiency.
Our approach maintains better accuracy while reducing the
number of captured images.
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