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Abstract— Detection of Electrocardiogram (ECG) character-
istic points can provide critical diagnostic information about
heart diseases. We propose a novel feature extraction and
machine learning scheme for ECG delineation. A new feature,
termed as randomly selected wavelet transform (RSWT), is
proposed to effectively represent ECG morphology. With the
RSWT feature pool, a regression tree is trained to estimate
the probability distribution to the direction toward the target
point, relative to the current position. The continual random
walk through 1D space will eventually produce a reliable region
from which the final position of the target point is derived.
The evaluation results on QT database show better detection
accuracy compared with other studies while providing real-time
processing capability.

I. INTRODUCTION

Automatic annotation of electrocardiograms (ECGs) has
received increasing attention because of its vital role in the
diagnoses of many cardiac diseases [1]. Most of the clinically
useful information in ECG can be inferred from the intervals
and amplitudes of the ECG characteristic points (the peaks
and limits of the individual QRS waves, P wave, and T wave).

There are many QRS complex detection and ECG de-
lineation methods to determine the positions of ECG char-
acteristic points. QRS complex detection methods [2], [3],
[4] including empirical mode decomposition and threshold-
independent QRS detection algorithm. However, since P and
T waves may have low amplitude and a variety of mor-
phologies, most of these QRS detection methods cannot be
straightforwardly applied to the detection of P and T waves.
Other delineation methods including low-pass differentiation
(LPD) [5], [6], hidden Markov models [7], and spline repre-
sentation [8] can delineate P and T waves, with pre-defined
models and manually adjusted data-sensitive parameters.

Wavelet transform is a popular technique in ECG charac-
teristic point detection [9]. Inspired by this method, Martinez
et al. [10] developed a single-lead ECG delineation system
based on wavelet transform. Based on an improved QRS
complex detection method proposed in [11], their system
estimated the P and T wave peaks, on-sets, and off-sets,
which showed acceptable detection accuracy on public ECG
databases. Chen et al. [12] modelled three categories of T
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wave and designed their decision rule accordingly. Dumont
et al. [13] applied evolutionary algorithms to tune parameters
of an ECG wavelet transform-based delineator, and achieved
similar detection accuracy as in [10]. P wave detection
and delineation are also achieved with phase free stationary
wavelet transform in [14].

Some recent studies have adopted statistical machine
learning techniques in the detection of ECG characteristic
points. Saini et al. [15] proposed a K-Nearest Neighbor
classification approach for ECG recognition, which was
evaluated on multiple ECG databases. However, the K-NN
method suffers from the curse of dimensionality when the
feature dimension is high, and the trained K-NN classifier
model is memory consuming. Based on partially collapsed
Gibbs sampler, Bayesian method was proposed in [16], [17].
By exploiting the strong local dependency of ECG signals,
the method showed relatively high detection accuracy of
ECG characteristic points on the QT database. However, their
method still have challenges when ECG signals don’t meet
their prior knowledge. In our previous work, a time-domain
feature randomly selected signal pair difference (RSSPD)
was proposed for ECG characteristic point detection in [18].
This detection scheme is preliminarily evaluated on pre-
selected 30 records on QT database and achieved acceptable
performance.

In this paper, we propose a fast ECG delineation scheme
by leveraging wavelet transform and machine learning tech-
niques to detect characteristic points in ECG waveform. We
devise a novel wavelet transform-based feature, termed as
randomly selected wavelet transform (RSWT) feature. The
RSWT feature effectively represents the morphology of ECG
waveform. With the RSWT feature pool, we build a random
forest regressor for each characteristic point. The regression
tree is trained to estimate the probability distribution to
the direction toward the target point, relative to the current
position. Then we devise a random walk testing scheme to
refine the final position of each ECG characteristic point. Our
evaluation result on the QT database [19] shows comparable
accuracy to other state-of-the-art works and a prominent
detection speed. This means our method can perform well in
applications like real-time ECG monitoring and diagnosis.

II. FRAMEWORK

Electrocardiogram (ECG) is a non-invasive way to mea-
sure the heartbeat rhythms. The heart’s electrical activity can
be captured by the voltage variance of ECG. The ECG signal
from a normal heart has typical features such as the QRS
complex, the T wave, and the P wave.



Our work can infer eight types of ECG characteristic
points: onset, peak and offset of P wave, onset, offset of
QRS complex and its fiducial mark (typically at the R-wave
peak, according to the annotation definition in QT database),
peak and offset of T wave (onset of T wave isn’t included
in QT database).

Fig. 1. The proposed framework for ECG delineation.

The proposed random walk framework consist of 2 stages:
model training and ECG delineation. At first we train a
random forest regressor model for each type of ECG char-
acteristic points, then devise a testing scheme for ECG
delineation, as is shown in Fig. 1.

In the random walk model training process, the inputs
are the ECG signal and their expert annotations. We train
a random forest regressor model for each type of expert
annotations. For each annotation position, we select Nsel

training positions with distance to the annotation position
dannot conform to the Normal distribution:

dannot ∼ N(0, σannot) (1)

Where the σannot is kept a small value to confine the distance
to the annotations. For each training position, we assign
a value of 1.0 or -1.0 according to the relative direction
between the training position and the annotation position.
Then the RSWT feature, which is described in detail later,
is extracted according to the training positions. Finally,
we adopt the random forest training algorithm to train the
regression model for our random walk scheme. The baseline
removal and noise reduction process can be combined within
the feature selection by the random forest regressor.

In the ECG delineation module, we process the ECG with
a beat-by-beat fashion. Since the R wave of the QRS complex
is relatively easy to detect, we first adopt an QRS detection
process, which can server as the basis for positioning other
characteristic points. Based on the R wave peak positions
given by the DPI algorithm [4], we detect the positions of
other characteristic points with a random walk estimation
scheme.

III. RSWT FEATURE EXTRACTION

We design a new feature for random forest regressor
to derive the position of ECG characteristic points. This
feature is extracted from the stationary wavelet transform
coefficients to represent the relative amplitude differences of
wave morphologies.

In the feature extraction process, a set of features are
extracted from one of the given ECG sample point positions.
The ECG time-domain signal is first transformed to 8 levels

of stationary wavelet domain with Daubechies 2 wavelet
(db2). We chose the db2 wavelet because the Daubechies
Wavelet is widely reported for the accuracy of details
compared to other methods. Moreover, this wavelet shows
similarity with QRS complexes and the energy spectrum
is concentrated around low frequencies [20]. Then a fixed-
size window with length Lw is positioned on each level
of wavelet coefficients, with window center located on the
target sample point. We set the value of the window length
Lw to 3 × fs to collect enough surrounding features of the
window center, where fs is the sampling frequency of the
input ECG. We extract features from the set of windows
to determine the relative position of the ECG characteristic
point between the window center. The RSWT feature for
each ECG sample position was extracted from a set of signal
windows centered on the sample position guided by a pre-
set pattern. This randomly selected pattern was fixed and
unchanged throughout the entire training and testing process.

F (pairx1,x2) =

[
Ax1
−Ax2

‖Ax1 −Ax2‖

]
(2)

Equation 2 describes the feature computation process,
where pairx1,x2 denotes the pair with index positions x1
and x2. Ax1

denotes the amplitude of the signal in position
x1. ‖ · ‖ denotes the absolute value sign.

IV. RANDOM WALK ECG DELINEATION SCHEME

A. Training with Random Forest Regressor

After the features are extracted, we adopt a random forest
regressor to estimate the probability distribution at current
testing location.

Random forest regressor is an ensemble method to esti-
mate value output with a bag of regression trees. The advan-
tage of random forest is that it is not prone to overfitting, and
produce a limiting value of the generalized error when the
number of trees increased. Each regression tree in random
forest is minimized in correlation while maintaining strength.
Moreover, random forest is relatively robust to outliers and
noise, and it is simple and easily parallelized [21].

The random forest regressor used in this paper is from the
Python scikit-learn tools, with a slightly modified version of
the random forest proposed in [21]. In contrast to the original
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Fig. 2. Pseudo code of Random Walk Scheme.



publication [21], the scikit-learn implementation combines
classifiers by averaging their probabilistic prediction, instead
of letting each classifier vote for a single class.

In the random forest regressor, the decision tree number
Ntree is set to 30, and the max depth limit of each decision
tree Dtree is set to 10.

B. Testing with Random Walk Algorithm

This section describes a fast detection scheme for ECG
characteristic point detection while maintaining high accu-
racy. As is shown in Fig. 2, the random walk algorithm
executes for a fixed number of times and estimate the final
position of the target characteristic point according to the
random walking path. Since the testing scheme do not need
to test each ECG sample point, therefore accelerates the
detection speed of the algorithm.

The testing process of other characteristic points starts
with estimations of their position Pseed. The estimation is
calculated by the position of the QRS and the relative bias
of the characteristic point, as shown in equation 3.

Pseed = PQRS + δtarget (3)

Where PQRS is the position of R peak in QRS complex, and
δtarget is the bias of current target label.

The bias δtarget is derived from the average of the biases
of every characteristic point with the same type in the
training data, as is shown in equation 4.

δtarget =

∑n
i=1[Ptarget(i)− PQRS(i)]

n
(4)

Where n is the total number of target label in the training
dataset, Ptarget(i) and PQRS(i) are the ith expert annotation
position of the target label and QRS label, respectively.

After deriving Pseed, a random walk process is initiated
to form a walk path, which is then used for estimating the
position of the target label. The random walk process is
conducted for each QRS detected to generate other ECG
characteristic point positions in each heart cycle.

The random walk process will run for Niter iterations.
At the beginning of ith iteration, we extract RSWT features
from the current walk position αi and set the RSWT feature
of current sampling point as input of the regression tree
model, then derive the output Rout. Thus we can estimate
the probability Pleft and Pright of target label according
to Rout, where Pleft is the probability that the nearest
target point lies in the left of αi, so is Pright. Since there
are only two directions in the 1-d ECG signal, therefore
Pleft + Pright = 1. In the next step, we randomly set the
direction of current sample point according to the value of
Pleft and Pright. And the next walk position is given by:

αi+1 = αi + χ · ε (5)

Where ε is the fixed step size of random walk process and
χ is the decision random variable given by:

χ =

{
−1, Pleft > Pright

1, Pright > Pleft
(6)

The random walk process will stop after Niter iterations.
The array of walk positions will form a random walk path
that converges to the final position of target label, as is shown
in figure 3.

Fig. 3. Random walk path of P and T wave peak, tested on record sel872,
QT database.

By adjusting the step size in random walk scheme (initially
we set ε = 3), the required iterations for each point can be
controlled to balance the trade-off between accuracy, stabil-
ity, and efficiency. In our experiments, sufficient accuracy
and stability is achieved with only 64 steps. By fixing the
number of steps, the computation time is stable regardless
of the ECG size.

According to the performance of training dataset, we
found that the walk path generally tend to vibrate around
the target point after Niter

2 = 32 iterations. The final output
of the random walk process is calculated by the walk path:

αoutput =

∑Niter

i=
Niter

2

αi

Niter

2

(7)

V. EXPERIMENTS

A. Comparison of Detection Accuracy

To evaluate the performance of the random walk algo-
rithm, we experiment on the QT database [19] and compare
with several other state-of-the-art algorithms.

The QT database contains 105 records, with annotations
of P, QRS, and T waves (except for T-onset). We randomly
select 75 records out of 105 records as training set, the
remaining 30 records as testing set, to evaluate the random
walk algorithm. This process is repeated for 30 rounds to
derive the averaged detection accuracy. The performance of
wave delineation is measured by the average M and standard
deviation SD of error values, which indicates the detection
accuracy of the proposed method. For each expert label, the
error is defined as the distance between the detection output
and the current expert label.

Table I shows the comparison results between the proposed
algorithm, RSSPD [18], the wavelet algorithm [10], [14]
and the Gibbs sampler algorithm [16], [17]. Our method
can detect more types of characteristic point compared with
algorithms [14], [16], [17]. We can also detect any other



TABLE I
DETECTION ACCURACY ON THE QT DATABASE

Method Metric P-on P-peak P-off QRS-on QRS-off T-peak T-off

Random Walk (ours) M±SD (ms) -1.4±10.4 0.7±8.7 -1.6±9.4 -1.5±7.8 1.4±7.6 -0.77±9.3 0.73±11.5

RSSPD [18] M±SD (ms) 0.4±22.0 N/A 2.1±12.9 0.2±10.2 0.5±14.4 N/A 1.4±17.2

Phase free SWT [14] M± SD (ms) -0.3±12.2 N/A 5.8±9.1 N/A N/A N/A N/A

Beat-to-beat BGS [16] M±SD (ms) 3.4±14.2 1.1±5.3 2.7±9.8 N/A N/A -0.8±4.1 -3.1±14.0

Multi-beat PCGS [17] M± SD (ms) 1.7±10.8 2.7±8.1 2.5±11.2 N/A N/A 0.7±9.6 2.7±13.5

WT [10] M±SD (ms) 2.0±14.8 3.6±13.2 3.5±18.0 4.6±7.7 0.8±8.7 0.2±13.9 -1.6±18.1
1N/A indicates the statistics is not available.

type of characteristic points by adding training samples to
the random forest regressor if there are enough annotations.
Besides, our SD is relatively better than algorithms [18], [10]
which means we achieve better robustness.

B. Random Walk Runtime Efficiency

The testing speed of the random walk scheme is related
to the estimation position Pseed, step size ε, and Niter. We
set the estimation position of each ECG characteristic point
relative to the R peak detected in ECG, as is shown in
equation 3. And we finally adjust Niter and ε to 64 and
3 according to the experiments.

In the experiment of this paper, we use a computer with
24GB of Ram, IntelCoreTM i7-4790 CPU @ 2.6GHz. On
average, a 100s ECG segment with sampling frequency of
500Hz will result in 25s of testing time with random walk
scheme yet 125s with our previous work RSSPD [18]. It
is acceptable for applications that displays ECG and its
annotations in real-time.

VI. CONCLUSION

We have proposed a novel fast ECG delineation scheme
with high speed and acceptable detection accuracy. The
proposed random walk testing scheme adopt random forest
regressor to determine the position of target ECG label
position. Other type of ECG characteristic points can also
be detected by adding training samples to the random forest
regressor. Therefore the random walk testing scheme is
suitable for real-time ECG delineation applications.
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