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Focus stacking is a computational technique to extend the depth of field through combining multiple images
taken at various focus distances. However, in the large aperture case, there are always defects caused by the large
blur scale, which, to the best of our knowledge, has not been well studied. In our work, we propose a max-gradient
flow-based method to reduce artifacts and obtain a high-quality all-in-focus image by anchored rolling filtering.
First, we define a max-gradient flow to describe the gradient propagation in the stack. The points are divided into
trivial and source points with this flow. The source points are extracted as true edge points and are utilized as anchors
to refine the depth map and the composited all-in-focus image iteratively. The experiments show that our method
can effectively suppress the incorrect depth estimations and give a high-quality all-in-focus image. © 2016 Optical

Society of America

OCIS codes: (100.3020) Image reconstruction-restoration; (110.3010) Image reconstruction techniques; (110.4155) Multiframe

image processing.
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1. INTRODUCTION

Optical lenses can only focus on a specific scene surface (usually
designed as a plane), leaving other regions of the scene subject
to various scales of defocus. Due to the limitation of depth of
field (DOF), it is often difficult to keep the whole content of a
single image in focus. One way to extend DOF is by decreasing
the aperture size; however, this yields a lower signal-to-noise
ratio (SNR) and requires longer exposure time. With the de-
velopment of digital imaging technology, a multifocus image
fusion technique, known as focus stacking, has become popular
[1,2]. This technique captures a sequence of images focusing at
various planes and fuses these images into a single all-in-focus
image. The stack is captured by moving the imaging sensor
along the optical axis, as shown in Fig. 1. We capture a sample
stack with an Imperx B4020 mono camera equipped with a
SIGGMA 50 mm∕F1.4 lens. This stack consists of 14 images
and is utilized to describe our method in the rest of this work.
Three of the 14 images are presented in Fig. 2. We also create a
3D sketch to show the optical geometry of our test scene.

The focus stacking technique has attracted a lot of attention
in the last decade. Forster et al. [3] proposed a complex wavelet
method to extend the DOF of microscopy images. A model-
based 2.5D deconvolution method, which estimated the
depth map and the texture simultaneously, was developed by
Aguet et al. [4]. Tian et al. [5] fused multifocus images by a
bilateral gradient-based criterion. Sroubek and co-workers

[6–8] decomposed the images with discrete wavelet transform
(DWT) and fused them in the coefficient domain. Liu et al.
[9] utilized dense scale invariant feature transform (DSIFT)
as the activity level measurement to fuse multifocus images.
Haghighat et al. [10,11] presented a fusion approach based on
variance calculated in discrete cosine transform (DCT) domain.
An alternative technique, called focal sweep imaging (FSI), was
proposed by Kuthirummal et al. [12] to extend DOF. In their
work, the sensor moved along the optical axis during one ex-
posure. The authors proved that the finally captured image was
approximately a depth-invariant blurred version of the sharp
image. Thus, the all-in-focus image could be restored through
deconvolution with a depth-invariant kernel.

This paper focuses on focus stacking in the large aperture
case. In this case, the edge will propagate the gradient in the
scale of the blur kernel, making the texture behave quite differ-
ent from the small aperture case. This phenomenon will yield
ghost edges in the result. The frequency-domain method pro-
posed by Alonso and co-workers [13,14] could partly overcome
this problem. In their work, each frequency component was
reconstructed by solving a linear equation based on a plane-wise
approximation of the 3D scene. However, these frequency-
domain equations will become highly ill-posed when the
number of images increases; thus, the result will be unstable.

In this paper, a spatial-domain method is proposed for
focus stacking in the large aperture case. We first define a
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max-gradient flow to model the propagation of the gradient
in the stack, and utilize this flow to extract the true edges from
the stack. We formulate an anchored rolling filtering approach
to refine the depth map and the all-in-focus image iteratively.
The experiments show that our method gives a high-quality all-
in-focus image and outperforms the compared state-of-the-art
methods.

2. TRUE EDGE EXTRACTION WITH MAX-
GRADIENT FLOW

In this section, we first define max-gradient flow to model the
propagation of the gradient in the stack. With this definition,
the points are divided into source points and trivial points to
select the true edges in the depth map.

A. Max-Gradient Flow
In this work, the magnitude of a gradient is taken as the sharp-
ness measure, which is defined as

Gi�x; y� � j∇I i�x; y�j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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�
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s
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where I i is the i-th image in the stack, andGi the gradient of I i.
Once the gradients of all the images are calculated, the depth
map can be initialized by

D�x; y� � arg max
i
Gi�x; y�; (2)

in which the element of D stores the index that gives the maxi-
mum gradient of each pixel. This depth map is also known as a
focus map. Due to the large blur kernel in the large aperture
case, the edges will spread in a large scale. Thus, there may
occur many ghost edges in the initial depth map.

To discuss the problem in detail, we present a sample
patch in Fig. 2 (close-up views in Fig. 3). This patch contains
strong and weak edges. The edges in the patch are blurry in
Image 2 [Fig. 3(a)] and sharp in Image 11 [Fig. 3(b)]. The gra-
dients of three typical pixels (red, green, blue) are presented in
Figs. 3(c)–3(e), in which the vertical axis represents the gradient
value of each pixel, the horizontal axis represents the index of
the image in the stack. By observing Fig. 3(a), we can find that
the red pixel locates just on the strong edge, the green pixel is
just within the blur range of the edge, and the blue pixel is just
outside the blur range. From Fig. 3(b), we can infer that the
green pixel is in the same plane with the blue one. However, it
can be seen in Fig. 3(d) that there exists a ghost edge in Image
2, whose gradient is even greater than that of the true edge in
Image 11. This is because the edge will propagate its gradient
along its normal direction when it is blurred. The gradients of
these ghost edges are actually meaningless.

We define the 2D max-gradient flow as

MGF�x; y� � �f x�x; y�; f y�x; y��T ; (3)

the elements of it being
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The flow describes the change of maximum gradient along
each axis, i.e., the propagation of gradient in the stack. The
direction along which the max-gradient propagates can be easily
derived as

Fig. 1. Focal stack geometry; the spot is in focus at plane Fj and out
of focus with various scales at plane F j−1 and Fj�1.

Fig. 2. Top row is the 3D sketch of our test scene with three focusing planes. Bottom row shows three images focused at yellow, pink, and purple
focusing planes, respectively. Red rectangle is the sample patch to demonstrate the max-gradient flow.
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θ�x; y� � arctan

�f y�x; y�
f x�x; y�

�
: (5)

B. True Edge Extraction
With the max-gradient flow, we define two kinds of points in
the focal stack: trivial point and source point. Without loss of
generality, assume that the main direction of the flow at pixel
�x; y� is along the x axis, the point �x; y� is defined as a trivial
point if

f x�x � Δx; y�f x�x − Δx; y� > 0 or max
i
Gi�x; y� < GTH;

(6)

which means that the direction of the flow does not change at
�x; y� or that the maximum gradient at �x; y� is lower than a
threshold. The threshold, GTH, is introduced to remove the
wrong edge detections due to noise.

Otherwise, the point �x; y� is defined as a source point if

f x�x � Δx; y� > 0 and f x�x − Δx; y� < 0; (7)

which means that it is the source where the max-gradient starts
propagating. The max-gradient flow of the sample patch is pre-
sented in Fig. 4. From the demonstration, we can easily derive
that the red and blue pixel are source points, and the green pixel
is a trivial point. All the source points form a sparse set, denoted
by S, which represents the true edges of the scene. Figure 5
demonstrates the extracted true edge points of the scene. It
can be seen that the ghost edges are effectively suppressed,
and the true edges are preserved as much as possible.

3. ANCHORED ROLLING FILTERING

In this section, we formulate an anchored rolling filtering ap-
proach to refine the depth map and the all-in-focus image with
the extracted true edges.

In the focus stacking problem, the depth map and the all-in-
focus image are closely related. On one hand, suppose that the

depth map D is perfect; the all-in-focus image can be estimated
by extracting the pixels from the focal stack by

FI�x; y� � ID�x;y��x; y�; (8)

where FI represents the composited all-in-focus image.
On the other hand, suppose that an estimated all-in-focus

image is available; the depth map can be refined by a joint
bilateral filtering approach [15]:

D̂�p� � 1

K p

X
p 0∈Np

exp

�
−
‖p 0 − p‖2

2σ2s
−
‖FI�p 0� − FI�p�‖2

2σ2r

�
D�p 0�;

(9)

where p � �x; y� is the pixel coordinate, K p is the normaliza-
tion factor, Np is the neighborhood of p, and σs and σr control
the spatial and range weights, respectively. Larger σs and σr will
yield a smoother depth map, and smaller σs and σr will yield a
sharper depth map. Np is set as a rectangle window that covers
the meaningful range of σs. In Eq. (9), the all-in-focus image FI
is taken as the guidance image of the joint bilateral filter. This

(a) (b)

(c) (d) (e)

Fig. 3. (a,b) Close-up views of the sample patch of Image 2 and
Image 11. Red pixel locates just on the strong edge. Green pixel locates
within the blur range of the edge. Blue pixel locates outside the bur
range. (c)–(e) Demonstration of the gradient changing of red, green,
and blue pixel with respect to the image number, i.e., the index of the
image in the stack. Note the difference of y axis limit between the
plots.

(a) (b)

(c) (d)

Fig. 4. (a) Max-gradient flow of the sample patch in Fig. 2. (b)–
(d) Close-up view of the flow at red, green, and blue pixel (magnitude
rescaled for better demonstration).

Fig. 5. True edge extraction. (a) Extracted true edges (nondark
blue) and meaningless points (dark blue). Red rectangle is the same
sample patch as in Fig. 2. (b) Close-up view of the sample patch.
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filtering approach smooths the depth map while preserving
the edges.

The reality is that neither the perfect depth map nor the all-
in-focus image are available. Thus, we take Eqs. (8) and (9) to
form a ping-pong approach that estimates the all-in-focus
image and refines the depth map in turn. Thus, starting from
the initial depth map, the all-in-focus image and the depth map
can be updated iteratively in a rolling way.

Furthermore, to prevent the depth map from being over-
smoothed, at the beginning of each iteration, we reset the depth
values in S to the initial values to control the iterative filtering
process. Because the reliable points in S act as anchors, this
iterative approach is called anchored rolling filtering.

To be in precise, we initialize the depth map with Eq. (2)
and get D0. The i-th iteration of our method is as follows:

Step 1: reset anchor points, Di−1�p� � D0�p�; ∀ p ∈ S;
Step 2: update all-in-focus image with Eq. (8), get FIi;
Step 3: filter depth map with Eq. (9) on guide of FIi, get Di .

The anchored rolling filter continues until the depth map
shows no significant change between two iterations.

4. EXPERIMENT

In this section, we present the experimental evaluation of our
method and the comparisons with state-of-the-art methods.

A. Setup
The performance is tested on the focal stack as described in
Section 1. This focal stack is captured with such a large aperture
that it is suitable to demonstrate the effectiveness of our
method. When capturing the focal stack, the movement of
the focusing plane will cause the change of FOV. This FOV
change is corrected with the image registration technique
[16–18]. In our experiment, the parameters are set as GTH �

0.05 (with the intensity ranging from 0 to 1), σs � 5,
σr � 0.1, and Np a 30 × 30 window.

B. Iteration
Figure 6 presents the iterations of the anchored rolling filter. It
can be seen that, in the initial depth map [Fig. 6(a)], there
are many ghost edges, which are removed in the final depth
map [Fig. 6(c)]. We evaluate the change of the depth map be-
tween two iterations with peak signal-to-noise ratio (PSNR).
The PSNR curve is presented in Fig. 6(d). It can be seen
that the depth map will not change significantly after about
60 iterations. Thus, we choose to stop the iteration after
Iteration 60. The final composited all-in-focus image is pre-
sented in Fig. 6(e).

C. Comparison
We also compare our method with state-of-the-art methods.
The comparison on our test large aperture data is presented
in Fig. 7, which shows the whole content of the composited
images of all the compared methods, along with the quantita-
tive evaluation on the evaluation patch [red rectangle in
Fig. 7(a)]. This patch contains strong and weak edges and is
influenced by the large-scale blur, as described previously. We
manually set the ground truth depth map of the evaluation patch
and make the ground truth all-in-focus patch by extracting the
content from the focal stack accordingly. The performance is
evaluated with structural SIMilarity (SSIM) index [19].

From the comparison, it can be seen that our method
[Fig. 7(b)] can give the highest SSIM value. Weak edges are
preserved as well as strong edges. The result is free of artifacts
and ghost edges. Whereas the FSI method produces artifacts
near strong edges and enhances the noise [Fig. 7(c)], the
2.5D deconvolution method [Fig. 7(d)], DCT-based method
[Fig. 7(e)], and DWT-based method [Fig. 7(g)] produce ghost
edges in this large aperture case, especially near the strong

Fig. 6. Depth map refinement. (a) Iteration 0 (initial); note the ghost edges indicated by the arrows. (b) Iteration 10. (c) Iteration 60 (final).
(d) PSNR between depth maps of Iteration i and Iteration i − 1. (e) Composited all-in-focus image.
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Fig. 7. Comparison of our method with state-of-the-art methods. (a) Left: Focal stack with the evaluation patch (red rectangle). Top right:
Manually set ground truth depth map of the patch. The embedded number represents the index of the in-focus image. Bottom right:
Manually set ground truth all-in-focus patch according to the ground truth depth map. (b)–(j) Results of our method and the compared methods.
Left: Composited all-in-focus image. Top right: Close-up view of the evaluation patch. Bottom right: Local SSIM value map (error map), in which
higher value represents more similarity. Overall SSIM value is also given. (b) Our method. (c) FSI method in [12]. (d) 2.5D deconvolution method
in [4]. (e) DCT-based method in [11]. (f ) DSIFT method in [9]. (g) DWT method in [8]. (h) Frequency domain method in [13]. (i) Photoshop.
(j) CombineZP.
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edges. The DSIFT-based method [Fig. 7(f )] cannot handle the
large aperture images and produces blurry results. The result of
frequency domain reconstruction is presented in Fig. 7(h). This
method cannot give stable results when the frequency-domain
equations are ill-posed, as even one inaccurate frequency com-
ponent will influence the whole image. We also tested
Photoshop CS6 (13.0 x 64) and CombineZP [20] on our sam-
ple data. The results [Figs. 7(i) and 7(j)] show that off-the-shelf
software cannot give good results in this case, either.

5. CONCLUSION

In conclusion, our work focuses on reducing the artifacts and
obtaining a high-quality all-in-focus image in a large aperture
case. We define a max-gradient flow to model the gradient
propagation in the stack. Based on this definition, a sparse
set of true edges is extracted. We formulate an anchored rolling
filtering approach to refine the depth map and the composited
image iteratively in a rolling way. Experiments are made on our
sample data captured with a large aperture. The results show
that the proposed method can effectively reduce the artifacts
caused by large blur scale and give an all-in-focus image with
higher quality at strong edges and weak edges than state-of-the-
art methods.
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