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a b s t r a c t

Depth-images-based human pose estimation is facing two challenges: how to extract features which are
discriminative to variations in human poses and robust against noise, and how to reliably learn body
joints based on their dependence structure. To tackle the first problem, we propose a novel 3D Local
Shape Context feature extracted from human body silhouette to characterise the local structure of body
joints. To tackle the second problem, we incorporate a graphical model into regression forests to exploit
structural constrains. Experiments demonstrate that our method can efficiently learn local body
structures and localise joints. Compared with the state-of-the-art methods, our method significantly
improves the accuracy of pose estimation from depth images.

& 2015 Published by Elsevier B.V.

1. Introduction

Accurate estimation of human poses is a key step for many
visual applications, such as human computer interaction, smart
video surveillance, character animation and augmented reality. A
nice review on this topic can be found in [1]. Although consider-
able research efforts have been devoted to it, pose estimation is
still a challenging task due to cluttered background, occlusion and
variation in appearance and pose [2]. Most techniques address
these challenges from two aspects: one seeks discriminative and
robust features to fight against noise and variations in appearance
and pose, and the other designs graphical models to utilise
structural information to constrain the distributions of body joints.

With respect to the features for pose estimation, a variety of
discriminative features have been developed [3]. Recently, with
the development of depth sensor techniques (such as Kinect or
time-of-flight sensors), many works focus on extracting features
from depth images [4,5]. A depth image represents depth mea-
surements of the scene [6–8]. Compared with RGB images, depth
images supply much richer geometrical information, facilitating
both the separation of human body from background and the
disambiguation of similar poses. Generally, appearance and shape
are the commonly used features for pose estimation. As to depth-

appearance-based features, Plagemann et al. [4] proposed a
geodesic-distance-based feature, which costs a large amount of
computation for iteratively calculating points of interest, and
Shotton et al. [5] proposed DCF (depth comparison features),
which describe body parts by depth differences at a sequence of
random offsets. Their works yielded state-of-the-art results. Their
features are effective and efficient on depth images, from which
many of later works [9–12] benefited. As to depth-shape-based
features, Li et al. [13] proposed a shape-based feature, termed
3DSC, which utilised depth information to obtain an edge-point
mask and calculated silhouette histograms on this 2D mask to
detect end-points of interest. As extracted on the mask images,
their features lack the 3D information. Furthermore, their frame-
work only processes limited endpoints (e.g. head, hand and foot).
Baak et al. [14] and Ye et al. [15] used point cloud matching
techniques for pose estimation, which are computationally
demanding. To the best of our knowledge, it seems that none of
the shape-based features have achieved a performance compar-
able to DCF yet. In our work, we aim to propose a novel depth-
shape-based feature which can attain satisfactory results.

With respect to the models of human pose, the pictorial structure
model [16] is one of the most popular models, for its effective
representation of articulated objects and its efficient inference algo-
rithm. It is trained to learn the spatial relationship between pairs of
joints, since the location of a joint is well constrained by its connected
joints. At its inference stage, the likelihood of each body joint is
evaluated over the 2D/3D space restricted by the trained model. Many
improvements of this model have been made, and the most relevant
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work goes in either of three directions: to build more reliable body
part (or joint) detectors [17–21], to introduce richer body models [22–
27] or to perform inference [24,28] by imposing temporary con-
straints. In the first direction, many methods tend to be finely tuned to
a specific dataset. In the other two directions, complex models and
inference require extensive computation. As we know, most of these
methods could hardly provide a real-time output due to the complex-
ity of part detection and inference on RGB images. In recent years,
some joint detection algorithms using random forests give real-time
state-of-the-art results [29–33]. However, they infer locations of body
joints either independently [5,10] or relying on some global latent
variables [9], neglecting the dependence between body joints. Dan-
tone et al. [21] designed two-layers regression forests to learn more
reliable joint detectors andmodelled the constraints by using Gaussian
distributions for efficient inference on RGB images. Yu et al. [34]
integrated action detection and cross-modality regression forests for
the estimation of 3D human pose.

In this paper, we propose a novel framework for human pose
recognition. It mainly consists of two modules. Firstly, we propose
a new depth-shape-based feature, termed 3D Local Shape Context
feature (3DLSC), by extending the 2D Shape Context (2DSC) [35] to
3D space, to characterise the location cues between human
silhouette and joints. Different from 3DSC [13], our 3DLSC captures
relative position information of silhouette points in 3D space. Thus
our feature is body-size invariant and efficiently adaptive to
persons with different heights. Experiments demonstrate that
our shape-based features could achieve comparable results with
the widely used DCF for pose estimation on depth images.
Secondly, we propose a combined learning scheme by incorporat-
ing a data-dependent pictorial structure into regression forests.
More specifically, depending on the training data arriving at the
leaf nodes of the regression forests, our model can learn distribu-
tions of each joint and spatial constrains between adjacent joints.
Different from the general pictorial structure [16], our proposal
models relative distributions according to the specific test image.
Compared with the state-of-the-art methods, our proposal can
significantly increase the accuracy of pose estimation.

The rest of the paper is organised as follows. In Section 2, we
present the construction of our 3DLSC feature, which consists of
two steps: silhouette extraction and histogram binning. The details
of our graphical models and regression forests are presented in
Section 3. Finally, experiments and discussion are shown in
Section 4 and conclusion and future work are given in Section 5.

2. 3D local shape context

In this section we present our 3DLSC feature. In [35] the 2DSC
feature was first proposed for shape matching. It has been applied

to pose estimation as it efficiently encodes local information of
human silhouette by using histograms at logarithmic polar
(log-polar) coordinates [36,37,13]. However, it faces two problems:
(1) it is usually noisy in the body silhouette obtained by motion
detection and it is difficult to extract inner edges due to the
ambiguity on clothing texture [36]; (2) it is ill-conditional to
recover 3D poses from 2D silhouettes due to lack of depth
information. To mitigate these problems, we extract our features
from depth images, which not only supply 3D information of
human body but also facilitate the extraction of inner edges. In a
similar spirit to [38] but using a different strategy and targeting a
different task, we develop novel 3D local features by computing
feature histograms at regularly spaced points on the edges of body
silhouette extracted from depth images. Therefore, our feature
construction consists of two steps: silhouette extraction and
histogram binning.

2.1. Silhouette extraction

Given depth image I, we assume that the foreground of human
body is already known. What we need to do is to extract outer and
inner edges from the depth image. To reduce the influence of noise
from depth sensors, we first use a Gaussian filter to smooth the
extracted body shape.

The Gaussian filtering for depth di at pixel pi is defined as

d̂i ¼
1
S

X
jANðiÞ

Gðdstði; jÞ;0;σ2Þdj; ð1Þ

where Gð�Þ is a Gaussian smooth function with mean zero and
variance σ2, N(i) is the 3� 3 neighbourhood of pi, dstði; jÞ indicates
the distance between points pi and pj in 3D space, and S is a
normalising constant. The Gaussian filter can effectively reduce
noise in depth measurements; Fig. 1 shows the effect of smoothing
on silhouette extraction.

A body silhouette on the depth image is a point set of edge
points. In order to extract silhouette points, depth values of
background pixels are set to 1. As a result, the set of silhouette
points E is obtained by using a local depth extrema function:

E¼ pi : max
jANðiÞ

ðd̂j� d̂iÞ4td

� �
; ð2Þ

where parameter td is a depth threshold set to 4 cm in our
experiments.

There are often many thousands of points in E, which not only
are too dense for shape description but also cost a large amount of
computation. Hence, we uniformly down-sample E to a subset E0

of N points with N¼300–500.

Frontal view Rotated 30o
Frontal view Rotated 30oDepth image

Fig. 1. Human body silhouette extraction of human body: (a) a human body depth image; (b) silhouette points without smoothing; (c) silhouette points after smoothing.
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2.2. Histogram binning

To capture 3D information, we transform each point in E0 to 3D
space and then calculate a 3D feature histogram for it.

Specifically, for each point pi in subset E0, we could calculate 3D
spatial parameters fρij;θij;φijg, which include the radius ρ, the
azimuth angle θ and the zenith angle φ, relative to other N�1
points. The specific meanings of spatial parameters are illustrated
in Fig. 2. Then we project them to a 3D histogram hi. The histogram
hi consists of 360 bins, hi(k) for k¼ 1;…;360, containing 5 bins of
radius ρ, 12 bins of angle θ and 6 bins of angle φ. The value of its
kth bin hi(k) is calculated by

hiðkÞ ¼
1
Ci

XN
j ¼ 1;ja i

vijðkÞ; ð3Þ

where Ci ¼
P

k;ja ivijðkÞ is a normalisation constant, vijðkÞ is the
weight projected to the kth bin of histogram hi from point pj and
its value is

vijðkÞp
1

ρij�ρðkÞ
��� ��� θij�θðkÞ

�� �� φij�φðkÞ
��� ���; ð4Þ

where parameters fρðkÞ;θðkÞ;φðkÞg are the middle values of the kth
bin. We distribute vij only to the two bins with the closest centres

in each of the three dimensions, i.e. eight bins in total. This can be
seen as a kind of smoothing for quantising histograms, which is
widely used in the HOG and SIFT features, and can reduce the
influence of outliers on depth silhouette. The whole shape or a
pose is thus encoded by N histograms denoted by H.

To make the feature local and invariant to different scales of
body shapes such as those for adults and children, for each hi,
we only consider the points that fall within the range of diameter
ρ (ρ is the mean distance of all ρij) and normalise radius ρij by ρ.
Besides, to strengthen discrimination in the near region and
weaken the influence of the far region, we convert radius to the
log-polar space. Meanwhile, as with [36], we do not normalise
shape contexts with respect to their dominant local orientations.

Our 3DLSC is a robust local descriptor of human pose. It
contains a great deal of pose information, since locations of body
joints can be easily identified when the 3D shape of a person is
given. We shall evaluate features in our experiments.

3. Graphical models and regression forests

There have been some methods proposed to learn mappings
from shape feature to human pose [36,37,13]. However, they are
either easily affected by ambiguous shape for single pose estima-
tion [36,37] or designed for some specific end-points detection
[13]. This makes them unfit for joints detection. Recently, regres-
sion forests have proved to be an efficient algorithm for pose
recognition [9,10]. They can handle high-dimensional feature
vectors and are of low computational complexity. Therefore, we
would take the advantages of random forests to learn regressors
for pose estimation. However, in previous work [36,37], distribu-
tions of body joints were learnt independently, in spite of the fact
that there is strong dependence between connected joints such as
if the position of the elbow is given along with some information
of nearby shapes, the position of hand will be strongly constrained.

Therefore, as [21] we incorporate the pictorial structure into
regression forests to learn a mapping from the 3DLSC feature
space to human poses. We learn two kinds of weak regressors
based on the training samples arriving at a leaf node: one is an
independent estimator about joint xi, and the other is a spatial
constraint estimator for a pair of joints ðxi; xjÞ if they are connected
in the topological graph defined by Fig. 3(a). We estimate the
distributions of joints xi and pairs ðxi; xjÞ by using the Gaussian
Parzen density estimators. As a result, our method can provide
structured outputs of joints' positions.

Fig. 2. Calculation of 3DLSC parameters (ρ; θ;φ) of p2 relative p1: p02 is the projected
point of p2 on XY plane, ρ is the distance of two points, θ is the azimuth angle of p2
on the XY plane and φ is the zenith angle of p2 to the XY plane.
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Fig. 3. (a) The graphical model we define for human body joints, with green lines indicating the dependence between connected joints. Our graph is divided into two
subgraphs, mainly for two motivations: we experientially assume that there is no strong dependency between upper and lower body parts and the division can accelerate
inference by parallelisation. (b) Our regression forest which learns independent and joint distributions of joints at leaf nodes: blue/yellow dots in squares indicate the votes
in 3D space of joint xi=xj; red dots indicate their relative positions. (For interpretation of the references to colour in this figure caption, the reader is referred to the web
version of this paper.)
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3.1. Graphical models

We use a classical pictorial structure to model the human body
[16]. Assume that the dependence between body joints can be
expressed by a predefined graph, G¼ ðV ; EÞ, as shown in Fig. 3(a),
where V and E denote the sets of nodes and edges in the graph G.
The nodes i¼ 1;2;…; JAV correspond to the joints located at xi of
human body, and edges ði; jÞAE describe their relations. Our
graphical model can be divided into two subgraphs: one illustrates
the structure of the upper part of human body, and the other for
the lower part.

The human pose configuration X¼ fx1; x2;…; xJg can be esti-
mated by maximising the posterior distribution given an observed
silhouette or a bag of 3DLSCs H:

pðXjHÞppðHjXÞpðXÞ; ð5Þ

where pðHjXÞ is the likelihood and often factorised as ∏iAVϕðxiÞ,
and pðXÞ is the prior on pose configurations and often defined as
∏i;jAEϕðxi; xjÞ by applying the constraints of connected joints in G.
As a result, the posterior of a human pose can be rewritten as

pðXjHÞp ∏
iAV

ϕðxiÞ � ∏
i;jAE

ϕðxi; xjÞ; ð6Þ

where ϕðxi; xjÞ is the structural constraint between joints xi and xj
and its specific expression would be discussed in Section 3.3.

In contrast to the work of [9,10], in which body joints are
treated independently, our model possesses an additional term
∏i;jAEϕðxi; xjÞ to impose spatial constraints when localising xi.

In our work, we utilise regression forests to learn the para-
meters of ϕðxiÞ and ϕðxi; xjÞ. At each leaf of regression forests, we
use a compact representation [10] to store the distribution of each
body joint of interest and the joint distribution of each pair of
connected joints there. Then we estimate ϕðxiÞ and ϕðxi; xjÞ using
the Gaussian Parzen density estimation.

3.2. Learning

This section presents how to learn the structure of a regression
forest and the corresponding parameters.

3.2.1. Learning tree structures
A regression forest, denoted by T¼ fT1;…; Ttg, consists of t

regression trees and each tree can be grown by a sequence of
learnt splitting functions ff ng as below [39,40].

Let S¼ fpig denote a set of sampled points collected from
training images. At the root node of a tree, training data S can be
split into two subsets, the left SL and right SR subsets, by evaluating
a splitting function f. The splitting function f compares the value of
the kth feature hp(k) of 3DLSC of point p with threshold η:

f ðp; k;ηÞ ¼ 0 if hpðkÞoη;
1 otherwise:

�
ð7Þ

At each node, there is a group of candidate splitting functions
with values randomly set for parameters fk;ηg and, among them,
the selected function fn is the one that minimises an entropy:

f n ¼ argmin
f

X
mA fR;Lg

JSm J
JSJ

HðSmÞ; ð8Þ

where

HðSmÞ ¼ �
XJ
j ¼ 1

P
pi ASmpðxj jpiÞ

JSm J
log

P
pi ASmpðxj jpiÞ

JSm J
; ð9Þ

in which pðxj jpiÞ denotes the contribution of, or the weight carried
by, pi to the localisation of joint xj, defined as

pðxj jpiÞpexp �
‖Δpi

j ‖
2
2

b

 !
δðJΔpi

j J2oρÞ; ð10Þ

where Δpi
j ¼ xj�pi presents the 3D distance between pi and xj and

δð�Þ is a delta function to make sure that only the joints xj close to
pi will be considered. The parameter b controls the steepness of
contribution of pi to xj; we set its value ρ2. Since a point may be
associated with more than one joint, we normalise pðxj jpiÞ to
make

P
jpðxj jpiÞ ¼ 1. Then, at each subsequent child node, the

splitting procedure will be applied recursively until stopping
criteria are met. The criteria usually include the minimum number
of samples arriving at the leaf node and the maximum depth of
the tree.

3.2.2. Regressors of ϕ (xi) and ϕ (xi, xj)
After the tree is constructed, at each leaf node l, we learn the

expressions of the regressors of ϕðxiÞ and ϕðxi; xjÞ based on the
samples arriving at this leaf. In order to compactly present their
distributions, we use the Gaussian Parzen functions. So in this
paper, we learn and store their corresponding parameter set: two
kinds of sets of offset centres, VðiÞl and VðijÞl.

Each element in the joint-offset VðiÞl, Δ
p
i ¼ xi�p, presents the

offset from the sampled point p to the predicted joint xi. Each
element in the structure-offset VðijÞl, Δij ¼ xi�xj, presents the offset
from joint xi to joint xj. We use a mean-shift algorithm with a
Gaussian kernel of a fixed bandwidth to cluster the offsets. The
centres of the largest K clusters (K¼1,2) are selected as the
representative offsets (termed relative votes [10]), and the sizes
of the clusters are used as the vote weights (termed confidence
weights [10]) of the offsets. Hence, two sets VðiÞl and VðijÞl of these
two kinds of relative votes and vote weights at leaf node l are
denoted by

VðiÞl ¼ fΔkðiÞl;wkðiÞlgKðiÞ
k ¼ 1 ð11Þ

and

VðijÞl ¼ fΔkðijÞl;wkðijÞlgKðijÞ
k ¼ 1; ð12Þ

where VðiÞl is the set of joint-offsets with its centre ΔkðiÞl and weight
wkðiÞl, and VðijÞl is the set of structure-offsets with its centre ΔkðijÞl
and weight wkðijÞl. The specific expressions of ϕðxiÞ and ϕðxi; xjÞ will
be stated at the inference stage in next Section 3.3.

3.3. Inference

Consequently, at the inference stage for a given depth image,
we can sample N silhouette points fs1;…; sNg; each point s would
reach a leaf node l of every tree in the forest, through evaluating
the binary splitting functions stored at splitting nodes, and can
provide weighted estimators for the location of xi:

fxsi ðkÞ;wkðiÞlgKi

k ¼ 1; ð13Þ

where xsi ðkÞ ¼ sþΔkðiÞl, called the absolute vote from point s to joint
xi.

We use Si to denote the set of absolute votes obtained from all
sampled points to xi. Generally, Si contains thousands of elements
and we shall select M largest weighted elements as a subset S0i. We
shall discuss the size M of S0i in the experiments. Then using these
absolute votes, we can estimate the likelihood of joint xi using a
Gaussian Parzen density estimator as

ϕðxiÞ ¼
Xj S0i j
m
ωmexp � xi�xiðmÞ

�� ��2
h2i

 !
; ð14Þ
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where xiðmÞ is the mth absolute vote for xi in S0i, ωm is the
corresponding weight, and hi is the empirical joint bandwidth
and we set it to 0.07 m in our experiments.

In the same way, we obtain its spatial constraint vote from leaf l
to the connected joints xi and xj, and thus for all sample points we
obtain a set Sc. A subset S0c of Sc is used to estimate ϕðxi; xjÞ by using
a Gaussian Parzen density estimator:

ϕðxi; xjÞ ¼
Xj S0c j
m
ωmexp � xi�xj�ΔijðmÞ

�� ��2
h2ij

 !
; ð15Þ

where ΔijðmÞ is the mth relative vote for ðxi; xjÞ in S0c , ωm is the
corresponding weight. The parameter hij is the limb-length band-
width of two connected joints and we set it to the mean of limb-
length calculated by using the training data. By collecting the votes
from sampling points, our spatial constraints are data-dependent
and it also makes our proposed method different from the general
pictorial structure [16,17].

As discussed in Section 3.1, the best configuration of human
pose in a pictorial structural model is searched by using the
following expression:

Xn ¼ argmax
X

∏
iAV

ϕðxiÞ � ∏
i;jAE

ϕðxi; xjÞ: ð16Þ

Note that our location variables are continuous in 3D space, which
makes searching for the best solution computationally demanding.
Therefore, we give an approximate solution for the output of pose
using iterative methods. Specifically, we use a mean-shift algo-
rithm independently over the likelihood space ϕðxiÞ to find one or
two candidates for each joint as the initial pose. Then a gradient
descent algorithm is applied to (17) to get the final result:

GðXÞ ¼ ∏
iAV

ϕðxiÞ � ∏
i;jAE

ϕðxi; xjÞ: ð17Þ

4. Experiments and discussion

4.1. Datasets

In this section, we evaluate our algorithm for human pose
estimation on two depth datasets, the Stanford dataset [41] and
our THU pose dataset. There is a similar dataset [5], but it is not
publicly available yet.

The Stanford dataset consists of 28 action sequences, which
include 7891 images in total with a resolution of 176�144. All the
images were captured from frontal view using a ToF camera in a
lab environment. Among the images, 6000 are selected for training
and the rest, less than 2000, are for testing.

The THU dataset contains 4500 depth images captured by a
Kinect camera, which consists of 4 persons performing general
actions (mostly upper limbs movements) and a limited torso
direction (�601, 601). Some samples are shown in Fig. 4. We use
manually labelled landmarks as the ground truth. Among the
images, 3600 are randomly selected for training and the rest are
for testing.

4.2. Preprocessing of the training data

Since we assume that the foreground of human body is already
known, some preprocessing should be done to the input samples.
For the samples in the THU dataset we use the foreground
obtained by Kinect SDK, while for each depth image sequence in
the Stanford dataset we segment the foreground from background
using a motion-based method [42]. We show some segmentation
results in the Stanford dataset in Fig. 5.

4.3. Implementation details

Our implementation of regression forests adopts settings simi-
lar to those of [10]: our forest is an aggregation of 3 trees with the
maximum depth of 20 and the minimum samples of 20; at each
splitting node, 12 randomly selected features with 100 random
thresholds each, i.e. 1200 random tests in total, were used to find
the best splitting.

4.4. Performance evaluation

We compare our algorithm with the state-of-the-art methods
in [10,5,41,13], using two measures: the average error and the
mean of average precision (mAP). The average error for each joint
is calculated by averaging the Euclidean distance between the
estimate and its ground truth. The mAP is obtained as the ratio of
the most confident joint hypothesis within the distance tolerance
τ¼ 0:1 m, as with [10].

Figs. 6–8 and Table 1 show the performance of our algorithm,
denoted by ‘ours (3DLSC þ Graph Model)’, the regression method
of [10], denoted by ‘Girshick et al.’ and three other algorithms
[5,41,13]. From the figures, we can find that our algorithm achieves
better results than that of [10]. More specifically, our algorithm
obtains 3.6 cm in the average error and 95.2% in mAP on the THU
dataset, and 3.5 cm in the average error and 98.2% in mAP on the
Stanford dataset, which surpass those of [10]. Moreover, the
superior results can be remarkably observed at limb ends, such
as elbow, wrist and hand, which we think benefits from the use of
graphical models. Compared with the results reported in [5,41,13],
our performance is superior as well. Note that in Table 1 we
evaluate our proposed method only on three joints (hand, head
and foot) and set the distance tolerance τ¼ 0:2 m to make the
evaluation consistent with [13].

Besides, we test the speed of our algorithm to process one
image on the Stanford dataset. With our non-optimised code, it
runs the processing at about 36 fps on our 4-cores computer.

4.5. Module performance

We further evaluate the effects of our modules separately:
(1) for the first module, we replace the features with 2DSC [36]
and DCF [5], and preserve the rest part; (2) for the second module,
we remove the graphical model from our method. For a fair
comparison, all of these experiments used the same parameters
and settings of regression forests and the graphical model.

Table 2 compares the performance between our 3DLSC feature,
2DSC [36] and DCF [5] on the Stanford dataset. We can observe
that our 3DLSC obtains the mAP of 98.2%, exceeding 2DSC by 10%
and also moderately better than DCF. This indicates the discrimi-
native power of our 3DLSC for pose estimation.

Furthermore, we investigate the effect of the graphical model.
In experiments, we compare the results obtained from inferring
each joint independently with those obtained from inferring each
joint by exploiting the constraints in the graphical model. It is
shown in Figs. 9 and 10 that, after adding the graphical model, our
method yields a better performance. Fig. 9 shows that the average
error decreases about 1.0 cm (from 4.5 cm to 3.5 cm), and mAP
increases 4.0% (from 94.2% to 98.2%) at τ¼ 0:1 m on the Stanford
dataset. Fig. 10 displays specific samples. Fig. 10(1) and (2) shows
the situation that the ambiguities occur when the left and right
body parts are close in space; Fig. 10(3) shows the case that a body
part (foot) might affect the detection results of another part
(hand). To show our results clearly, we give another two results
from the left-side and the top views. It can be observed that the
graphical model helps us to reduce the ambiguities among similar
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joints and the influence of other body parts. This indicates the
positive effect of using the graphical model for pose estimation.

4.6. Discussion

In this section we investigate the effects of five main factors
that may affect the estimation accuracy of our method. These
factors are the Gaussian filtering, the histogram multi-binning, the
number of silhouette points, the votes normalisation factor ρ and
the sizes of subsets S0i and S0c. At the end of this section, we also
discuss the scalability of our model.

4.6.1. Gaussian filtering and histogram multi-binning
Fig. 11 illustrates the effects of two smoothing factors, the

Gaussian filtering and the histogram multi-binning, that corre-
spond to the procedures represented by (1) and (4), respectively. It
shows that the pose-estimation performance will drop when there
is no Gaussian filtering or multi-binning for the construction of
3DLSC; between these two factors, removing multi-binning leads
to a greater drop.

Such positive effects of the Gaussian filtering and the multi-
binning may be attributed to the fact that the Gaussian filtering
can remove some noisy points that interfere a good localisation of
human shape, and the histogram multi-binning can distribute the

Fig. 4. Samples from the THU dataset: RGB and depth images.

Fig. 5. Results of foreground segmentation in the Stanford dataset: pairs of original and foreground images.

Fig. 6. Performance of two methods on the THU dataset: (a) average estimation error vs. body joint; (b) mAP vs. body joint.
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noise across a feature vector and thus weaken the negative
influence of the noise.

4.6.2. Number of silhouette points
We retrain regression forests with different numbers N of

sampled silhouette points, with N from 100 to 900. The results
are shown in Fig. 12. When N is increased from 100 to 400, the
performance will be enhanced dramatically: the average error
decreases from 5.1 cm to 3.6 cm, and mAP increases from 92.8% to
95.2%. When NA ½400;900�, the accuracy tends to be stable. This
indicates that a human pose can be efficiently encoded by a low-
dimensional silhouette representation.

4.6.3. Votes normalisation factor
We used the votes normalisation factor ρ to make our algorithm

invariant to different scales of shapes. In order to investigate the effect
of ρ, we train new regression forests without normalising votes. That

is, we use a fixed absolute distance ρ to replace ρ. Considering that
there seems only one person's actions available in the Stanford
dataset, we carry out experiments on the THU dataset, which captures
four persons' actions. In the experiments three values of ρ (0.3 m,
0.5 m and 0.8 m) were applied and their results, labelled by ‘Not
Normalised’, are shown in Fig. 13, along with the result of our method.
The results clearly indicate that our normalisation factor ρ can adapt
well to different body sizes.

4.6.4. Sizes of subsets S0i and S0c
For simplicity, the sizes of subsets S0i and S0c are set the same.

The results of mAP versus the subset size from 1 to 500 for the
Stanford dataset are shown in Fig. 14. We can observe that mAP
rises as the size increases from 1 to 100, after which it flattens out.
In the experiments, we use 200 as the subset size in our
experiments.

4.6.5. Scalability of model
In this section, we discuss the scalability of our model.

Theoretically, the basic framework of our model is founded on
random forests, which have been proved to be robust for human
pose recognition even for samples of large sizes [5,9,10]. To
validate this, in our real applications we increase the number of
training samples from 3.6 K to 10 K. The results are illustrated in
Fig. 15. From Fig. 15, it can be observed that our model can
effectively adapt more complex poses as the samples increase.

5. Conclusion and future work

We have proposed a novel approach to human pose estimation
from depth images, which significantly outperforms the state-of-
the-art methods. Our model combines regression forests and
graphical models. It considers the dependence between body
joints by using a predefined graphical model. The results have
shown that, by employing such a combination, the accuracy for

Fig. 7. Performance compared with Girshick et al. [10] on the Stanford dataset: (a) average estimation error vs. body joint; (b) mAP vs. body joint.

Fig. 8. Performance compared with other methods [5,41] on the Stanford dataset: (a) comparison with two other methods of [5,41]; (b) estimation results of our proposed
method.

Table 1
Comparison with Li et al. [13] on the Stanford dataset. Note that we use a different
distance tolerance (τ¼ 0:2 m) to make our evaluation consistent with that of [13].

Method/mAP (τ¼ 0:2 m) Hand Head Foot

Li et al. [13] 0.870 0.800 0.990
Ours (3DLSC þ Graph Model) 0.997 1.000 0.997

Table 2
Comparison of our 3DLSC with 2DSC [36] and DCF [5] on the Stanford dataset.

Method/Accuracy mAP (τ¼ 0:1 m)

2DSC 0.876
DCF 0.976
3DLSC 0.982
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Fig. 10. Effect of the graphical model: (a) the original depth image; (b) results from the method [10]; our results from (c) the front view, (d) the left-side view and (e) the
top view.

Fig. 11. Effects of Gaussian filtering and histogram multi-binning on pose estimation for (a) average estimation error and (b) mAP.

Fig. 12. Effect of the number of silhouette points.

Fig. 13. Effect of the votes normalisation factor ρ .

Fig. 9. Performance of the graphical model for (a) the THU dataset and (b) the Stanford dataset. Left-hand panels in (a) and (b): average estimation error vs. model. Right-
hand panels in (a) and (b): mAP vs. model.
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human pose estimation could be dramatically improved. Further-
more, we have proposed a new 3D local shape feature called
3DLSC, which contains a sequence of histograms in log-polar bins
by using 3D silhouette points. The 3DLSC feature has excellent
discriminative ability for human poses.

Our experimental results also suggest some research questions,
in particular how to combine colour and depth information to
offer a more accurate estimation of the dependence among joints.
These questions are inspiring our future work.
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