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a b s t r a c t

Particle filtering (PF) and kernel based object tracking (KBOT) algorithms have shown their promises in

a wide range of visual tracking contexts. This paper mainly addresses the association of PF and KBOT.

Unlike other related association approaches which usually directly use KBOT to refine the position

states of propagated particles for more accurate mode seeking, we elucidate the problem of what kind

of particles is suitable for employing KBOT to refine their position states from a theoretical point of

view. In accordance with the theoretical analysis, a two-stage solution is also proposed to resample

propagated particles that are suitable for invoking KBOT from a computational perspective. The

incremental Bhattacharyya dissimilarity (IBD) based stage is designed to consistently distinguish the

particles located in the object region from the others placed in the background, while the matrix

condition number based stage is formulated to further eliminate the particles positioned at the

ill-posed conditions for running KBOT. Once the appropriate particles are obtained, constrained

gradient based mean shift optimization enables us to efficiently refine the particles’ position states.

Besides, a state transition model embodying object-scale oriented information and prior motion cues is

presented to adapt to fast movement scenarios. These ingredients lead to a new tracking algorithm.

Experiments demonstrate that the proposed association approach is more robust to handle complex

tracking conditions in comparison with related methods. Also, a limited number of particles are used in

our association algorithm to maintain multiple hypotheses.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

2-D visual tracking is the problem of automatically estimating
the locations of moving objects in the consecutive frames of a
video sequence. It is of great pertinence to many applications
such as surveillance [1,2], intelligent traffic navigation [3,4],
human computer interaction [5–7], content based video indexing
and retrieval [8–10]. The challenges in building up a robust visual
tracking system arise from the presence of background clutter,
occlusion, fast movement, object appearance changes, illumina-
tion variations, varying object scales (i.e., object sizes), etc. Up to
now, numerous approaches (e.g., [11–22]) have been proposed to
overcome these difficulties, the reader is referred to [23] for a
comprehensive survey of the literature.

Among the available visual tracking approaches, particle
filtering (PF, also known as Condensation) [13] and kernel based
object tracking (KBOT, also known as mean shift tracking) [14]
algorithms have achieved considerable success over the last
decade. As a statistical approach, PF is established for dealing
ll rights reserved.
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with the multi-modal visual tracking problem of general non-
linear and non-Gaussian systems. Its most appealing merit is that
it provides a convenient framework for estimating and propagat-
ing the posterior probability density function (pdf) of state
variable regardless of the underlying distribution [23,24]. How-
ever, to precisely approximate the variations of the posterior pdf
in state space, the difficulty lies in the fact that PF algorithm
usually demands a large number of densely sampled particles.
This in turn will incur heavy computational load and further
suppress the using of PF in real-time application environments.
Unlike PF, KBOT is a non-parametric approach. In KBOT, the target
region is represented as a color histogram weighted with an
isotropic kernel function, and the gradient based mean shift
optimization is used to iteratively seek a target candidate which
is the closest mode of the target model in the current frame.
Although remarkably lower computational cost and easier imple-
mentation are demonstrated by KBOT in comparison with PF,
KBOT shows the noticeable deficiency in handling multiple modes
(caused by similar object, cluttered background, etc.) and tem-
porary lost (caused by occlusion, quick motion, etc.) [23]. These
KBOT’s disadvantages can be attributed to the gradient based
mean shift optimization used for searching object in the basin of
attraction of Bhattacharyya coefficient based similarity function.
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However, it is worth noting that above mentioned strengths and
weaknesses suggest that PF and KBOT can complement each other
instinctively. In view of this, to the problem of designing a tracking
approach whose performance is superior to that of PF/KBOT, a
potential solution is the association of PF and KBOT, i.e., to properly
integrate PF and KBOT into one optimized tracking framework.

Some important research works have already been done on the
issue of the association of filtering approach and KBOT. Comaniciu
et al. [14] adopt an integrated framework in which Kalman
filtering is used to estimate the state uncertainty of moving object
first, and then KBOT is employed to find a more accurate object
position. However, Kalman filter assumes that the noise
sequences are Gaussian and the time-varying functions are linear,
which means that it cannot process the tracking problem of
general non-linear and non-Gaussian systems [13,25]. Based on
the mode detection algorithm using variable-bandwidth mean
shift, Han et al. [24] incorporate incremental kernel density
approximation technique into the PF framework for addressing
visual tracking. The challenge is that incremental kernel density
approximation itself is burdened with expensive computational
cost [26], especially that their method still requires a relatively
large number of particles to get competitive tracking performance
(actually, 400 particles are used in the tracking experiments on
real data). Besides, as for algorithm implementation, the number
of Gaussian kernels should be properly set in advance, but this is
usually not trivial in practice [17,26]. In [27], the authors run PF
and KBOT trackers in a parallel way first, and then the object
position is determined from comparing the Bhattacharyya coeffi-
cient based confidences of the tracking results of two trackers.
This kind of balance is somewhat ad hoc, and it pays little
attention to the combination of the advantages of PF and KBOT,
thus it will not perform well when both trackers are simulta-
neously unreliable. In addition, as a bin-to-bin similarity measure,
Bhattacharyya coefficient is not vey discriminative, especially
when it is used for measuring similarities between high dimen-
sional features [17,21,28]. To prevent particles from quickly
degenerating into a very limited number of particles which are
not positioned at or near to the true mode, Chang and Ansari [29]
apply gradient based mean shift optimization to refine the
position states of propagated particles for more accurate mode
seeking. Although the propagated particles are supposed to move
towards high probability modes in state space through iterative
mode seeking procedure, it is not reliable enough to directly run
KBOT on arbitrary particles. As will be clarified in this paper, this
can be traced to the fact that gradient based mean shift iteration
usually converges to undesirable positions when particles are
placed in the background or are positioned at the ill-posed
conditions. With respect to the association structure, the
approaches of [30–35] are generally similar to that of [29]
regardless of the fact that some of these approaches are also
benefited from other cues (e.g., an adaptive transition model is
embedded in the association approach of [31]) or are developed
for different application contexts (e.g., the association approach of
[35] is designed for a hand control wheelchair). To sum up, in
spite of the fact that the association approaches of [29–35] have
already shown better tracking accuracy than PF and KBOT, the
authors have not clearly investigated the core issue which we
have addressed in this paper. This core issue is whether KBOT is
suitable for refining the position states of arbitrary particles for
more accurate mode seeking. If not, how to apply KBOT to refine
particle’s position state in a reasonable and efficient way? This
paper attempts to contribute to a better understanding of the
association of PF and KBOT.

Compared with the association approaches described in
[29–35], the key differences with respect to our association
approach are as follows. (1) we elucidate the problem of what
kind of particles is fit for employing KBOT to refine their position
states from a theoretical point of view. (2) From a perspective of
computation, we present a two-stage solution (i.e., the incre-
mental Bhattacharyya dissimilarity (IBD) based stage and the
matrix condition number based stage) to resample propagated
particles that are well suited for invoking KBOT. (3) A constrained
gradient based mean shift optimization is presented to efficiently
move the position states of the appropriate particles towards
more accurate modes. (4) A state transition model embodying
object-scale oriented information and prior motion cues is pro-
posed to adapt to fast movement scenarios. (5) Based on these
components, a new tracking algorithm is also given.

Note that this paper is not focused on object representation in
visual tracking paradigm. It is a fact that color histogram based
appearance model has been successfully used in many existing PF,
KBOT and association based tracking algorithms [14,24,27,29–36].
To fairly compare our approach and related approaches, we also
specify color histograms for object representation throughout this
paper. Extensive experiments demonstrate that our association
approach outperforms the regular PF, KBOT and other two popular
association approaches [29,31] in handling challenging tracking
tasks. Furthermore, as a general tracking approach, just like the
association approaches of [14,24,29–35], different features can
also be easily incorporated into our association approach.

The remainder of this paper is organized as follows. We first
introduce the mathematical concepts of PF and KBOT in Section 2.
Section 3 presents a detailed description of the proposed associa-
tion approach including the theoretical analysis, the two-stage
solution, the constrained gradient based mean shift optimization,
the state transition model and the tracking algorithm. Section 4
presents comparative experiments to demonstrate the effective-
ness of our association approach. Section 5 concludes with a
discussion and makes an outlook of possible future extensions.
2. Preliminary theories

2.1. Particle filtering

PF is a state space approach for implementing recursive
Bayesian filter via sequential Monte Carlo (SMC) simulation
[13,25]. Let xt denote the object state at time t, let Zt ¼ fz1,z2,
. . ., ztg denote the observation sequence up to time t, let pfzt9xtg

denote the observation likelihood function and let pðxt9xt�1Þ

denote the state transition model, the visual tracking problem
in Bayesian filter is defined to model dynamic system by recur-
sively estimating the posterior pdf

pðxt9ZtÞppðzt9xtÞ

Z
pðxt9xt�1Þpðxt�19Zt�1Þdxt�1: ð1Þ

Different from other approaches such as Kalman filter and
extended Kalman filter which provide the solutions of (1) under
their respective conditions [13,14,25], PF is designed to address

(1) under more general situations where pdf pðzt9xtÞ and pðxt9xt�1Þ

are usually non-linear and non-Gaussian. The basic idea of PF is to

offer a discrete approximation of pdf pðxt�19Zt�1Þ by randomly

sampling a set of K particles with states fsk
t�1g

K

k ¼ 1 and importance

weights pk
t�1

� �K

k ¼ 1
. By substituting pdf pðxt�19Zt�1Þ with the

sampled particle set fsk
t�1,pk

t�1g
K

k ¼ 1, (1) can be expressed as

pðxt9ZtÞppðzt9xtÞ
XK

k ¼ 1

pk
t�1pðxk

t 9s
k
t�1Þ: ð2Þ

Now, according to (2), the state estimation problem can be
iteratively solved via prediction and update steps. In practice, to



A. Yao et al. / Pattern Recognition 45 (2012) 2584–25972586
estimate the object position at time t, regular PF algorithm
generally has four steps.
1.
 Re-sampling: From the particle set fsk
t�1,pk

t�1g
K

k ¼ 1 at time t�1,

generate a new particle set fsk
t�1,pk

t�1 ¼ 1=Kg
K

k ¼ 1 by removing

particles with small weights and concentrating on particles
with large weights.
2.
 Propagating: According to the state transition model
pðxt9xt�1 ¼ sk

t�1Þ, propagate each re-sampled particle state sk
t�1

to get a new state sk
t for time t.
3.
 Weighting: Based on the state sk
t and corresponding observa-

tion zk
t , compute the weight pk

t of each propagated particle at
time t as pðzk

t 9x
k
t ¼ sk

t Þ first, and then normalize it by

pk
t ¼

pðzk
t 9x

k
t ¼ sk

t ÞPK
k1 ¼ 1

pðzk1
t 9xk1

t ¼ sk1
t Þ

: ð3Þ
4.
 Estimating: Calculate the object position at time t as

EðxtÞ ¼
XK

k ¼ 1

pk
t sk

t : ð4Þ

2.2. Kernel based object tracking

Unlike PF, KBOT is a deterministic tracking approach. Its basic
purpose is to iteratively seek a target candidate which is the closest
mode of the target model in the current frame [14]. Let q and pðxÞ

are two M-bin histogram features (e.g., color histogram) extracted
from a hand-drawn target region in the reference frame and a
candidate target region centered at 2-D x in the current frame,
respectively,

PM
u ¼ 1 qu ¼ 1 and

PM
u ¼ 1 puðxÞ ¼ 1, the Bhattacharyya

coefficient based similarity function to be maximized in KBOT is
defined as

r pðxÞ,qð Þ ¼
XM
u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
puðxÞqu

p
, ð5Þ

where

pu xð Þ ¼
1

C

XN

i ¼ 1

k :
x�xi

h
:2

� �
dðbðxiÞ,uÞ, ð6Þ

where

C ¼
XN

i ¼ 1

k :
x�xi

h
:2

� �
, ð7Þ

kðxÞ is a non-negative, isotropic and monotonic decreasing kernel
profile which weighs over N pixel locations, h is the 2-D bandwidth
vector of kðxÞ, d is the Kronecker delta function, bðxiÞ is the feature
vector of the pixel at location xi, and N is the number of pixels
located in kðxÞ. To find the new target position in the current frame,
the histogram feature pðx0Þ of the initial target candidate positioned
at 2-D x0 in the current frame is computed first. Using the Tailor
expansion around the value of puðx0Þ, the linear approximation of (5)
can then be extended as

rðpðxÞ,qÞ � 1

2

XM
u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
puðx0Þqu

p
þ

1

2C

XN

i ¼ 1

wik :
x�xi

h
:2

� �
, ð8Þ

where

wi ¼
XM
u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qu

pu x0ð Þ

r
dðbðxiÞ,uÞ: ð9Þ

Note that the first term in (8) is a constant, that is, it is
independent of x. Therefore, maximizing (8) only depends on its
second term. This can be achieved by using the gradient based
mean shift optimization. During the procedure, the object posi-
tion is iteratively moved from the current position x0 to the new
position x̂0 according to

x̂0 ¼

PN
i ¼ 1

xiwig : x0�xi

h :2
� �

PN
i ¼ 1

wig : x0�xi

h :2
� � , ð10Þ

where gðxÞ ¼�k0ðxÞ. As noted in [14], gðxÞ is a constant if using
Epanechnikov profile

kðxÞ ¼
1
2 cdðdþ1Þ 1�: x0�x

h :
� �

if : x0�x
h :r1

0 otherwise
:

(
ð11Þ

3. The proposed association approach

According to section 2.1, it can be concluded that the belief of
the estimated posterior pdf pðxt�19Zt�1Þ in PF is only correlated
with the sampled particle set fsk

t�1,pk
t�1g

K

k ¼ 1. To provide a good
approximation of the underlying distribution of posterior
pðxt�19Zt�1Þ in state space, PF usually requires a large number of
densely sampled particles. However, this in turn will bring about
heavy computational burden due in large part to the high dimen-
sionality of state space. Therefore, if using PF in practical applica-
tions, how to model the variations of the posterior pdf pðxt�19Zt�1Þ

in state space with a fairly small number of particles is of great
importance. A general way to address this efficiency problem is to
reallocate the particles to high probability mass areas via a variety
of techniques such as unscented particle filter [37] and covariance
scaled sampling [38]. Alternatively, according to section 2.2, KBOT
also provides a computationally efficient approach to generate a
fair particle set mainly due to its simplicity and effectiveness. By
employing KBOT to move particles towards mass areas where the
dominant modes (i.e., the peaks) of posterior pdf pðxt�19Zt�1Þ are
located, the number of particles needed in PF may be fairly
reduced. This avoids having to choose a proposal distribution
allowing for efficient allocation of the particles [37,38].

From a theoretical perspective, a central issue should be con-
sidered in designing a robust association approach of PF and KBOT is:
whether KBOT is suitable for refining the position states of arbitrary
particles for more accurate mode seeking. If not, under what
conditions particles are fit for invoking KBOT to move their position
states to more accurate modes? However, as described in the
introduction section, existing association methods [29–35] usually
directly use KBOT to refine the position state of each propagated
particle. That is, this central issue has not been addressed in the
literature. For this reason, the main goal of this section is to
sufficiently explore it. We will analyze the theoretical properties of
KBOT first, and then present our association approach. The frame-
work of the proposed association approach is summarized in Fig. 1.
3.1. Theoretical analysis

In the following, we first provide and prove the theoretical
properties of KBOT for a better understanding of the gradient
based mean shift optimization. In accordance with the theoretical
analysis, we then derive the theoretical solution for the problem
of what kind of particles are well adapted to using KBOT to renew
their position states for more accurate mode seeking.

Property 1. The maximum of possible movement region where the

object can be correctly localized by KBOT is the kernel size.



Fig. 1. The framework of the proposed association approach.
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Proof. Let ôi ¼oig : x0�xi

h :2
� �

, we can derive (12) from (10),

Dx¼ x̂0�x0 ¼

PN
i ¼ 1

ôixi

PN
i ¼ 1

ôi

�x0 ¼

PN
i ¼ 1

ôiðxi�x0Þ

PN
i ¼ 1

ôi

¼ a1ðx1�x0Þþ , � � � ,þaNðxN�x0Þ, ð12Þ

where ai ¼
ôiPN

i ¼ 1

ôi

, and ôiZ0. Thus,
PN

i ¼ 1

ai ¼ 1. Recall that kernel

kðxÞ is symmetric about the origin x0, we have

min Dx
		 		� �

¼min x1�x0j j, � � � , xN�x0j jð Þ,

¼ 0,0ð Þ
T

ð13Þ

maxð Dx
		 		Þ ¼maxð x1�x0j j, � � � , xN�x0j jÞ ¼ h: ð14Þ

According to (13) and (14), the minimum of iterative step size

in KBOT is the zero vector, while the maximum is the kernel size.

Thus Property 1 is proved.

Property 2. The positional displacement vector in KBOT is invariant

to the scaling of the weight set by a positive coefficient.

Proof. Similarly, let ôi ¼ aoi, where a40, we can readily derive
(15) from (10),

Dx¼

PN
i ¼ 1

ôig : x0�xi

h :2
� �

xi

PN
i ¼ 1

ôig : x0�xi

h :2
� � �x0 ¼

PN
i ¼ 1

oig : x0�xi

h :2
� �

xi

PN
i ¼ 1

oig : x0�xi

h :2
� � �x0: ð15Þ

According to (15), it is obvious that the positional displacement

vector Dx in KBOT does not change under conditions of ôi ¼ aoi

or oi. Thus Property 2 is proved.

Property 3. The positional displacement vector in KBOT is not

invariant to a positive constant offset from the initial weight set to

a new weight set.

Proof. Recall that gð: x0�xi

h :2
Þ ¼ gð: � x0�xið Þ

h :2
Þ and

PN
i ¼ 1 gð: x0�xi

h :2
Þ

xi�x0ð Þ ¼ 0, let ôi ¼oiþa, where a40, we can derive (16)

from (10)

Dx¼

PN
i ¼ 1

ôig : x0�xi

h :2
� �

xi

PN
i ¼ 1

ôig : x0�xi

h :2
� � �x0
¼

PN
i ¼ 1

oig : x0�xi

h :2
� �

ðxi�x0Þþa
PN

i ¼ 1

g : x0�xi

h :2
� �

ðxi�x0Þ

PN
i ¼ 1

ðoiþaÞg : x0�xi

h :2
� �

¼

PN
i ¼ 1

oig : x0�xi

h :2
� �

ðxi�x0Þ

PN
i ¼ 1

oig : x0�xi

h :2
� �

þb

, ð16Þ

where

b¼ a
XN

i ¼ 1

g :
x0�xi

h
:2

� �
: ð17Þ

According to (16), it is clear that the direction of the positional

displacement vector Dx in KBOT is invariant under conditions of

ôi ¼oiþa or oi, only the iterative step size changes. Thus

Property 3 is proved.

Property 4. Maximizing Bhattacharyya coefficient based similarity

function (5) is equivalent to finding the solution of a system of linear

equations.

Proof. For KBOT, it has already been stated in [39] that maximiz-
ing (5) defined similarity function can be replaced by the mini-
mization of

OðxÞ ¼ :
ffiffiffi
q
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðx0þDxÞ

p
:, ð18Þ

where x¼ x0þDx, Dx is the positional displacement vector. On the
other side, Eq. (6) can be rewritten in a more concise form

pðxÞ ¼UT KðxÞ, ð19Þ

where

U ¼ ½u1,u2, . . ., uM �

KðxÞ ¼ ½kðx1,xÞ,kðx2,xÞ, . . ., kðxN ,xÞ�T , ð20Þ

where

uj ¼ ½dðbðx1Þ,ujÞ,dðbðx2Þ,ujÞ, . . .,dðbðxNÞ,ujÞ�
T

j¼ 1, . . ., M: ð21Þ

Now, by expanding (18) in a Taylor series with respect to Dx

and dropping the higher order terms, we have

ADx¼
ffiffiffi
q
p
�

ffiffiffiffiffiffiffiffiffi
pðxÞ

p
, ð22Þ
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where,

A¼
1

2
diag p1ðxÞ,p2ðxÞ, . . ., pMðxÞ

� ��1
2UT JðxÞ, ð23Þ

where

JðxÞ ¼
@K

@xx
,
@K

@xy


 �
¼

@kðx1 ,xÞ
@xx

, @kðx1 ,xÞ
@xy

@kðx2 ,xÞ
@xx

, @kðx2 ,xÞ
@xy

,. . .,
@kðxN ,xÞ
@xx

, @kðxN ,xÞ
@xy

2
666664

3
777775: ð24Þ

Here AARM�2, DxAR2, qARM and p xð ÞARM , hence, it is

evident that minimizing (18) is equivalent to solving a system

of linear Eq. (22). Thus Property 4 is proved.

Following the theoretical properties of KBOT proved so far, we
can easily derive that KBOT is not suitable for refining the position
states of arbitrary particles. Further, the theoretical results for the
problem of what kind of particles are adapted to using KBOT to
refine their position states for more accurate mode seeking are
concluded as follows.

(1) Since kernel size reflects object scale, Property 1 implies
that KBOT cannot deal with fast movement scenarios where there
is usually no or little overlap between the object regions in two
consecutive frames. That is, KBOT can only be used for refining
the position states of particles which are completely or at least
partially located in the object region. This is why KBOT is easy to
be trapped into a local maximum [14,23,39].

(2) For any two particles, Property 2 and Property 3 demon-
strate that if there exists a linear relation between their respective
weight sets of sample pixels, the particle which is closer to the
true mode is easier to converge to a more accurate solution of (22)
in comparison with the other one.

(3) From the perspective of getting a numerically stable
solution of (22), Property 4 shows that only the particles whose
positions are placed at well-posed conditions are adapted to
invoking KBOT for more accurate mode seeking. That is, KBOT
cannot be used for refining the position states of particles that are
positioned at ill-posed conditions.

3.2. Two-stage solution

Up to now, we have clarified the problem of what kind of
particles are well suited for invoking KBOT to seek more accurate
modes from a theoretical point of view. However, in practice, it
still remains unclear on the problem of how to efficiently measure
the quality of particles in terms of the theoretical results. To this
end, we propose a computationally tractable solution to select
appropriate particles from the propagated particle set while
meeting theoretical results. In the light of theoretical results
(1) and (2), the particles located in the background should be
eliminated, while the particles positioned at ill-posed conditions
should be discarded according to (3). Therefore, our solution is
composed of two stages which well address above considerations.

The first stage of our solution is devoted to distinguishing the
particles located in the object region from the others placed in the
background. In the context of using histogram features as obser-
vations to represent particles, this can be done by comparing
particle weights which are usually computed from available
measures. However, the widely used measures such as Bhatta-
charyya coefficient and Kullback–Leibler divergence [40] are not
discriminative enough, especially for measuring the similarities
between high dimensional histogram features [17,21,28]. Here,
we employ our previously proposed IBD [41] to discriminate the
particles located in the object region from the others placed in the
background. Our IBD has two attractive properties. (1) An incre-
mental similarity matrix (ISM) is embedded in the traditional
Bhattacharyya coefficient based dissimilarity for better evaluating
the difference between a target histogram and a particle histo-
gram. Such an ISM works as a bin-mixing matrix and enables a
cross-bin interaction. (2) With the support of ISM computed in
joint spatial temporal space, the discriminative capability of IBD is
superior to the state of the art measures.

Given a target histogram q and a particle histogram p that have
the same dimensions to those of the inputs of (5), IBD is defined
as

d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
q
p T

W
ffiffiffi
p
p� �r

, ð25Þ

where W is the ISM, W ¼ wij

� 
ARM�M , 8i,j, 0rwijr1, wij ¼wji,

and
P

j

wij ¼ 1. The entry wij denotes the incremental similarity

belief between the matched bins qi and pj. Usually, a large wij set

is easier to obtain a small dissimilarity value in comparison with a
small wij set. Analogous to (5), (25) is bounded by zero and one,

thus such an ISM also has the advantage of being not needed to
renormalize the dissimilarity in the range of zero to one.

In the computation process, we first construct each ISM in
spatial space and in temporal space, respectively. Then, the final
ISM in joint spatial temporal space is obtained through a filtering
approach. The detailed computation process of IBD and more
analysis are referred to [41]. Here, Fig. 2 shows some example
results to compare the discriminative capability of Bhattacharyya
coefficient, Kullback–Leibler divergence and our incremental
Bhattacharyya similarity (r¼ ffiffiffi

q
p T W

ffiffiffi
p
p

). The results are obtained
by calculating the similarities between the histogram pairs of
each particle region (indicated with red rectangle) and the target
region (indicated with green rectangle). Each particle region has a
same size to the target region, and its center is scanned all over
the target region. For color histograms, they are computed at a
8�8�8-bin dimension in RGB space. It can be observed that
Bhattacharyya coefficient and Kullback–Leibler divergence obtain
very similar scores for many particle regions, while our incre-
mental Bhattacharyya similarity can better discriminate the
particles that are close to target center from the others that are
relatively far from it.

Once the particles located in the object region have been
consistently distinguished from the others placed in the back-
ground. We carry out the second stage of our two-stage solution.
The second stage is dedicated to eliminating the particles posi-
tioned at the ill-posed conditions for invoking KBOT. Knowing
from the theories of linear algebra, the system of linear Eq. (22)
will have a unique solution if and only if A is a full rank matrix.
However, since AARM�2, where M is the dimension of histogram
feature (generally, MZ8), (22) is usually an over-determined
system of linear equations. Hager et al. [39] present a modified
iteration procedure to compensate un-converged problem of (22).
A more general way is to analyze the numerical stability of the
system of linear Eq. (22) by calculating the condition number of
matrix AT A [42]. Here, we use norm-2 based matrix condition
number to evaluate whether a particle is positioned at ill-posed
conditions or not,

condðAT AÞ ¼
lmaxððA

T AÞT AT AÞ

lminððA
T AÞT AT AÞ

 !1=2

, ð26Þ

where lmax and lmin are the maximal and minimal eigenvalues of
the symmetric real matrix ðAT AÞT AT A, respectively. As for KBOT,
the particle with a small matrix condition number is easier to
converge to a numerically stable solution of (22) in comparison
with the others with larger matrix condition numbers. That is,



Fig. 2. Comparison of three different similarity measures. (a) The sample image. (b) Results of Bhattacharyya coefficient. (c) Results of Kullback-Leibler divergence.

(d) Results of incremental Bhattacharyya similarity.
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more large condition number indicates that the particle is more
susceptible to trapping into a problematic solution.

From the above description, we can see that the IBD and
matrix condition number based stages of the proposed approach
are run in a cascaded manner. In practice, when most of the
propagated particles are located in the object region, the matrix
condition number based stage usually contributes more to the
improved tracking performance compared with the IBD based
stage. Opposite to the above case, when a large portion of the
propagated particles are positioned in the background, the
improved tracking performance is usually attributed in a large
part to the IBD based stage. In other successful scenarios, the
tracking performance is more likely to benefit from the joint
contribution of two stages. More precisely speaking, the matrix
condition number based stage can be viewed as a boosting step
following the IBD based stage to seek more reliable particles
which are well suited for invoking KBOT to refine their position
states. Thus, in general, neither the contribution of IBD base stage
nor the contribution of matrix condition number based stage can
be neglected.

Here, we provide an example to show the effectiveness of our
two-stage solution. Fig. 3a and b are two consecutive frames in a
video sequence. Based on the estimated object region in the
previous frame, we first uniformly sample 25 particles (whose
centers are indicated with red crosses) in the current frame. Next,
we run KBOT on each particle for more accurate mode seeking. In
the experiments, the iteration upper bound of KBOT is set equal to
20. Fig. 3c and d show the results. In Fig.3d, red arrows represent
the top 10 particles of 20 candidates sorted in an ascending order
of IBD values, and green arrows point to the best 5 particles of 10
candidates (selected with IBD from 20 particles) sorted in an
ascending order of the matrix condition numbers. It is obvious
that our two-stage solution can well discriminate the particles
located in the object from the particles placed in the background.
In addition, for KBOT, the particles further singled out with
respect to matrix condition number have the property of quickly
converging to accurate positions as shown in Fig. 3c.

As for the association of PF and KBOT, our two-stage solution
can be directly inserted between the weighting and estimating
steps of PF. After selecting more appropriate particles from the
propagated particle set, KBOT may be used to move them to more
accurate modes in state space. However, in this way, the resulting
particle set is smaller than the original set in size, which means
the main concept of filtering in state space will be lost. That is not
what we want to see. Note that the main goal of our two-stage
solution is essentially consistent with that of particle re-sampling
from the perspective of using KBOT to refine the position states of
particles. In our association approach (as shown in Fig. 1), the
two-stage solution is naturally incorporated into the particle re-
sampling step. Its main advantage is that the measures of IBD and
matrix condition number are not only used for suppressing the
effects of the degeneracy problem but also for guaranteeing the
fitness of re-sampled particles for running KBOT. Apart from that,
the steps of particle re-sampling and state propagation are
exchanged for compactness [13,24,25]. Consequently, similar to
the association approaches of [24,29–35], the proposed associa-
tion approach remains in the PF paradigm.

3.3. Constrained gradient based mean shift optimization

Once appropriate particles are re-sampled from the propagated
particle set, KBOT can be directly used to move their position
states to more accurate modes along the gradient descent direc-
tion of the likelihood surface. Different from this general way, we
use the constrained gradient based mean shift optimization in
which we add a relatively small upper bound (in this paper, we set
it equal to 8 during experiments) as a restriction on the iteration
procedure mainly due to two facts. One is that the re-sampled
particles from our two-stage solution have the property of fast
convergence. With respect to the example shown in Fig. 3, the
average number of iterations for the top 5 particles selected from
our two-stage solution is 4. The other is that the later possible
stages of iteration procedure usually move very little displace-
ments [14,39]. Therefore, running KBOT on each re-sampled
particle in the modified way not only reasonably compensates
particle set for the un-densely sampling of the posterior pdf but
also rationally saves some unnecessary computational cost.

3.4. State transition model

One important goal of the association of PF and KBOT is to
make a tradeoff between particle number and particle diversity so
that well suited particles can be consistently re-sampled from the
propagated particle set, further KBOT can be used on them to seek
more accurate modes. This goal can easily be achieved when the
target moves with a relatively stable velocity or with a predictable
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motion pattern [13,29]. However, for the association algorithms of
PF and KBOT, when fast movement scenarios are frequently
available, achieving the goal will not easy any more. In this case,
making a tradeoff between particle number and particle diversity
demands that at least some of the particles in the propagated
particle set should be allocated in the target area, which implies
that the prediction of future positions of moving object should be
properly harnessed. In this subsection, we advance a new state
transition model to make an attempt to account for searching
region where the target is covered. Instinctively, under the same
fast movement scenarios, a small size object is easier to be lost in
comparison with a big size object owing to the less object overlap
between two continuous frames. Consequently, unlike conven-
tional state transition models which usually resort to prior motion
cues [13] or sophisticated learning techniques [31], our dynamic
model jointly utilizes object-scale oriented information and prior
motion cues to provide a prediction of possible object movements.
Specifically, the proposed state transition model is defined as

xt ¼ xt�1þ
1

2
ðxt�1�xt�3Þþst : ð27Þ

Here, the second term represents the average speed of a
moving object in the previous two frames. Term st is generated
from a Gaussian distribution Ntð0,sÞ, where standard variation
vector s reflects the object scale at time t�1. Note that st acts as a
balance term to decrease the possibility of false prediction under
scenarios of unpredictable fast movement. In the algorithm, we
set s according to

sðhÞ ¼ ah, ð28Þ

where h is the kernel size, a is a positive coefficient. In general, the
larger the kernel size h is, the smaller will be the coefficient a. We
recommend to choose a in the range of 0.25–2 (its default value is
0.5). In the experiments, we test our state transition model on a
large number of publicly available video sequences [44,45] and
find it is quite amenable to the changing speeds of moving object.

3.5. The tracking algorithm

Given the target model q containing M bins and the particle set

fsk
t�1,pk

t�1g
K

k ¼ 1 at time t�1, the implementation of our tracking

algorithm is described as follows:
1.
 Propagating: According to the proposed state transition model
(27), propagate each particle state sk

t�1 to get a new state sk
t for

time t.

2.
 Re-sampling: Based on the state sk

t and respective histogram

feature pk
t , compute the weight pk

t of each propagated particle

at time t according to pðpk
t 9x

k
t ¼ sk

t Þ and (25), and calculate

matrix condition number ck
t according to (26), then generate a

new particle set fsk
t ,pk

t ¼ 1=Kg
K

k ¼ 1 by concentrating on particles

with large weights and small matrix condition numbers (the
way is similar to that provided in [25]).
3.
 Refining: Run constrained KBOT for each re-sampled particle to
move its state sk

t to a more accurate state ŝ
k
t .
4.
 Weighting: Based on the state ŝ
k
t and respective histogram

feature p̂
k
t , compute the weight p̂k

t of each refined particle at
time t according to pðp̂

k
t 9x

k
t ¼ ŝ

k
t Þ and (25), and normalize it

according to (3).

5.
 Estimating: Calculate the object position at time t as

EðxtÞ ¼
PK

k ¼ 1 p̂
k
t ŝ

k
t .

We shall now proceed to provide a complexity analysis. To
make the analysis clear and concise, we focus on the basic



Fig. 4. Pedestrian sequence: the frames #1, #46, #77, #97, #140 and #198 are shown. The reference object in the first frame is represented in yellow rectangle, and the

results of our tracker, PF tracker, BKOT tracker, the trackers of [29] and [31] are indicated in magenta, green, red, blue and cyan rectangles, respectively. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)
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operations needed for performing each step of the proposed
tracking algorithm. Since histogram feature can be generated in
a constant time via a pre-computed integral histogram [43], we
omit its cost analysis here. Among the five steps listed above, we
can easily see that the operations required to perform steps 1 and
5 are linearly proportional to the particle set size K . According to
the definitions of (25) and (26), the operations required to
calculate the IBD based weight and matrix condition number of
every particle are OðM2

Þ and Oð2�M � 2Þ, respectively. Thus step
2 has a running time of OðKM2

Þ operations. Note that step
4 mainly repeats the process of computing IBD based particle
weight K times, it also takes OðKM2

Þ operations. Denote ak
t as the

number of iterations performed when using constrained KBOT on
the kth re-sampled particle to seek a more accurate position state,
the total iterations executed in step 3 is

PK
k ¼ 1 ak

t . Recall that we
set the iteration upper bound in KBOT equal to 8, thus step 3 at
most executes 8K iterations. From the above description, it can be
concluded that the relatively expensive parts in the proposed
tracking algorithm are the computation of IBD based particle
weight and the running of iterative procedure in KBOT. By using
the skills we previously proposed in [41], running IBD on each
particle will asymptotically take OðMÞ operations. Section 4.3
provides a processing speed comparison of our tracking algorithm
and other related algorithms on real data.
4. Experimental results

Performance comparison of our association approach and
related approaches on real data is given in this section.

4.1. Implementation

Our reference approaches include the regular PF, KBOT and
two popular association based approaches [29,31]. Compared
with the approach of [29], an adaptive state transition model is
embedded in the algorithm of [31]. As we have already clarified in
the previous section that the association structures of the
approaches of [30–35] are basically similar to that of [29]
irrespective of the other factors such as features and application
environments. Thus under the same experimental settings, it can
be supposed that the performance of tracking algorithms of
[30–35] in a certain sense is comparative to that of [29]. The
source code of [29] is provided by Dr. Chang, and the MATLAB
codes of the other three reference algorithms are strictly imple-
mented according to the pseudo-codes provided in [13,14] and
[31], respectively, no computational optimization is considered.
In PF tracker, the particle number is 500, and a widely used
second order autoregressive model

xt ¼ bxt�1þgxt�2þnt

where vt �Nð0,1Þ, b¼ 2, g¼�1 ð29Þ

is used as the state transition model. In KBOT tracker, when the
difference between the results of two continuous iteration steps is
equal to or less than 0.8, the mean shift procedure is stopped. As
for the two association based trackers, we completely follow the
default parameter settings reported in [29] and [31], respectively.
Specifically, we set N¼ 50, KðxÞ ¼ exp:x:2

, I¼ 3, f ðl0,iÞ ¼ 2�il0 and
nt �Nð0,3Þ for the tracker of [29], while we set s0

x ¼ s0
y ¼ 14,

s0
h ¼ 0:13, kp ¼ 10, ks ¼ 5 and Ns ¼ 30 for the tracker of [31]. Our

tracking algorithm is also implemented in MATLAB, and 50
particles are used to maintain multiple hypotheses. Note that
color histograms have already been used for representing object
in four reference approaches, thus to have a fair comparison, we
also specify color histograms for object representation in the
experiments, and color histograms are generated in RGB color
space with 8�8�8 bins. Considering that our algorithm, PF
algorithm, the algorithms of [29] and [31] all belong to the
statistical algorithms, we run them in 20 times and take the
averaged results as their final outputs.

On a desktop PC (2.5 GHz Intel Pentium 4 processor, 512 MB
RAM, 120 GB hard disk), we run these five trackers on a number of
real video sequences most of which are publicly available from
[44,45]. For each test video sequence, the target in the first frame
is initialized with a hand-drawn rectangle region and tracking
results are also indicated with rectangle regions. In the following
subsections, we just present representative results on several real
video sequences containing different objects and challenges to
show the efficacy of the proposed association approach.

4.2. Comparison of tracking performance

The first set of experiments is done on a video sequence
containing 235 320�240-pixel color images. In this video, the
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target is a pedestrian which moves across a dancing room with a
relatively stable velocity while mainly experiencing background
clutter (e.g., frames #1, #97, #140, #198) and partial occlusion
(e.g., from frames #70 to #85). Fig. 4 shows some frames of this
video sequence. The root square error (RSE) between the esti-
mated object center and the manually labeled ground truth is
plotted for each frame in Fig. 8a, and the average RSEs of five
trackers over all frames of each test video sequence are presented
in Table 1. In Fig. 4, the yellow rectangle in the first frame shows
the reference object, and the magenta, green, red, blue and cyan
rectangles in the other frames show the results of our tracker, PF
tracker, KBOT tracker, the trackers of [29] and [31], respectively.
Note that KBOT tracker fails when the color values of the
surrounding region become very similar to those of the pedes-
trian at frame #172, and it cannot recover from the lost from then
on. Compared with KBOT tracker, PF tracker shows much better
capacity to deal with temporary failure. However, it temporarily
loses the pedestrian several times when partial occlusion is
occurred together with serious background clutter (e.g. from
frames #101 to #106). The tracker of [29] sometimes exhibits a
bit worse performance than PF tracker in the cases of background
clutter and partial occlusion, and it completely loses the target at
frame #185. Due to the fact that the tracker of [31] entirely loses
the pedestrian from frame #127 to the last, its average RSE on this
video sequence is largely magnified as shown in Table 1. As a
result, the tracker of [31] generally shows the worst performance
among five trackers. The unsatisfactory performance of the
trackers of [29] and [31] is mainly due to the fact that KBOT is
not suitable for refining the position states of arbitrary particles
for more accurate mode seeking. By invoking KBOT on the
particles located in the cluttered background or positioned at
the ill-posed conditions, these particles will easy to be moved
toward false modes that are not close to the object position. In
Table 1
Comparison of the average RSEs for five trackers on four video sequences (in

pixels, all frames are considered).

Video sequence PF KBOT [29] [31] Our tracker

Pedestrian 7.88 28.68 23.69 102.29 5.65

Man’s face 26.63 32.68 8.73 11.64 5.48

Ping-pong ball 39.00 37.18 18.73 12.41 5.00

Girl’s face 100.95 12.36 29.18 28.48 5.22

Fig. 5. Man’s face sequence: the frames #1,
this case, as the tracking error is accumulated over time, tracking
lost is likely to happen. However, this issue is not well addressed
in the association approaches of [29] and [31]. The fact of the
higher average RSEs of the trackers of [29] and [31] to that of PF
tracker serves as a concrete example. As for our tracker, this issue
is sufficiently considered. By encoding the spatial-temporal attri-
butes of the target, the IBD based measure can reliably distinguish
the foreground particles from the background particles in the
scenarios of cluttered background and partial occlusion. Further,
the matrix condition number based measure discards the parti-
cles located at ill-posed conditions for invoking KBOT. Conse-
quently, the selected particles have higher probability to move
towards more accurate modes in comparison with the neglected
particles. According to Figs. 4, 8a and Table 1, our association
approach shows much better capability to suppress the influences
of cluttered background and partial occlusion in comparison with
the association algorithms of [29] and [31], and the best tracking
performance on this video sequence has also been obtained by
our association approach.

Next, in the second set of experiments, we mainly consider
visual tracking under fast movement conditions. The experiments
are implemented on a challenging video sequence studied and
provided by Birchfield [44]. The video sequence is composed of
128�96-pixel color images recorded under laboratory condi-
tions, in which a man’s face undergoes back-and-forth movement
with a fast speed (e.g., from frames #1 to #4, from frames #13 to
#16). There also exist unpredictable camera motion and transient
variations in face pose. Fig. 5 shows some frames of this video
sequence, and the RSE curves are shown in Fig. 8b. Note that
KBOT tracker quickly drifts away from the target when there is
little or no overlap between the face regions in the two con-
secutive frames. This can be attributed to the limitation of
maximum iteration step size of gradient based mean shift
optimization. Although PF tracker shows better performance than
BKOT tracker, its tracking accuracy is not high because it is not
well adapted to handling the scenario of fast movements where
most of the particles are usually not located in the target region.
Comparatively speaking, since no serious background clutter or
partial occlusion is available in this video sequence, the tracker of
[31] does not reach the man’s face only at frame #21, while the
tracker of [29] exhibits even more accurate results. Specifically,
on this video sequence, the average RSEs of the trackers of [29]
and [31] are 8.73 and 11.64 pixels per frame, respectively, which
#2, #13, #14, #21, and #23 are shown.
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are much smaller than those of KBOT tracker and PF tracker as
shown in Table 1. Recall that our tracker introduces a new state
transition model which embodies object-scale oriented informa-
tion and prior motion cues to handle particle diversity under fast
movement scenarios. Once the particle diversity is reasonably
guaranteed, the particles which are suitable for invoking KBOT for
more accurate mode seeking can be picked out via our two-stage
solution. Therefore, as can be seen from Fig. 8b and Table 1, our
association approach accurately tracks the man’s faces through-
out the video sequence. Further, our approach provides compar-
able performance on this video sequence to the trackers of
[17,29,44,46].

Subsequently, the third set of experiments is implemented on
a popularly used ping-pang ball video sequence [14] containing
88 frames with resolution of 352�240 pixels. In the former
frames of this video sequence, the ping-pong ball moves up-and-
down with a fast speed (e.g., frames #9, #10, #12). In the later
frames, partial occlusion (e.g., frames #63, #64, #65) and back-
ground clutter (e.g., frames #73, #75) are the main difficulties.
Apart from that, there exist transient variations in ping-pong ball
size over the video sequence. For these trackers, we use the linear
filtering technique described in [14] to adapt object scale changes
over time. With respect to the frames shown in Fig. 6, the RSE
curves plotted in Fig. 8c and the average RSEs given in Table 1, it
can be noticed that both PF and KBOT trackers temporarily fail
when the ping-pong ball falls down with a fast speed in the
former frames. Although the average RSE of KBOT tracker is a bit
smaller than that of PF tracker, PF tracker shows better perfor-
mance than KBOT tracker in the later frames where the target
mainly undergoes partial occlusion and background clutter. By
contrast, the trackers of [29] and [31] prove to be more robust,
similar results and conclusions have also been reported in [31].
Here, we want to point out that [31] only reports the results on
the former frames from #1 to #60. That is, the latter 28 frames of
the ping-pong ball video sequence are not considered in [31]. For
our tracker, with the auxiliary support of the proposed state
Fig. 6. Ping-pong ball sequence: the frames #1, #9, #10
transition model, the information of prior object size and motion
cues is captured. On the other hand, our association approach
uses IBD and matrix condition number to jointly measure the
confidences of the propagated particles from the perspective of
employing KBOT to seek more accurate modes. Benefited from
these ingredients, our algorithm precisely tracks the ping-pong
ball almost throughout the video sequence. Only when the ping-
pong ball shrinks into a small size (less than 8�8 pixels) at frame
#84, our tracker drifts off the target. Specifically, the average RSE
of our tracker on this video sequence is 5 pixels per frame.
Further, the results of our approach on the frames from #1 to
#60 are also comparative to the trackers of [31], and the
integrated approach of Kalman filter and KBOT [14] (in which
the latter 28 frames are also not considered).

In the fourth set of experiments, we further evaluate the
robustness of five trackers to handle hybrid difficulties including
object appearance change (e.g., frames #1, #81, #117, #172),
partial occlusion (e.g., from frames #440 to #464), cluttered
background (e.g., frames #8, #331, #440) and slight object scale
variation (e.g., frames #1, #117, #331). In the experiments, a
widely used girl’s face video sequence [44] consists of 501 frames
with resolution of 128�96 pixels is used. Some frames of this
video sequence are illustrated in Fig. 7, and Fig. 8d shows the RSE
curves. It can be observed that PF tracker fails at frame #88 where
the girl’s face deforms non-rigidly in pose under cluttered back-
ground conditions, and it cannot recover the lost from then on. As
a result, PF tracker comparatively produces the worst average RSE
than reference trackers as shown in the last row of Table 1. The
main reason is that Bhattacharyya coefficient is not discriminative
enough to measure particles located in the cluttered environ-
ments. As for KBOT algorithm, the tracked face center is placed
within the target region for almost all frames of the video, but its
accuracy is not consistently high. When the man’s face gets close
to and further occludes the girl’s face, KBOT track quickly drifts to
the man’s face. Comparatively speaking, the trackers of [29] and
[31] are proved to be more robust than PF tracker. However, these
, #12, #64, #73, #75, #82, #83 and #84 are shown.



Fig. 7. Girl’s face sequence: the frames #1, #8, #81, #117, #172, #331, #440 and #464 are shown.
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two association based trackers also temporarily lose the object in
the serious background clutter scenarios (e.g., from frames #100
to #150). As we described beforehand, this can be traced to the
fact that direct implementing KBOT on arbitrary particles may
incur unexpected tracking errors. Since this issue is properly
addressed in the proposed approach, our tracker again achieves
more accurate results on this video sequence compared with the
other four reference trackers.

4.3. More analysis

In this subsection, we proceed with more analysis. First, we
compare the tracking precision of five different algorithms over
respective successful tracks on each test video sequence. Unlike
the way of calculating the average RSEs shown in Table 1, in the
statistical process, when an estimated target is sufficiently far
from the ground truth (e.g., there is no overlap between the
estimate target and the ground truth), it is considered as a ‘‘lost
track’’ and the error is not accumulated in the accuracy measure.
That is, the tracking accuracy has a value of interest in the
comparison only when all trackers under analysis are close to
the real target. Following this protocol, the average RSE on each
video sequence is computed for every tracker. Table 2 presents
the detailed results. Note that the average RSE of our tracker is
5.65, 5.48, 4.00 and 5.22 pixels per frame for pedestrian, man’s
face, ping-pong ball and girl’s face video sequences, respectively,
which is more accurate than those of the other four trackers.
Further, two association based trackers [29,31] usually shows
more accurate tracking results than PT tracker and KBOT tracker,
which implies that if association approach is effective, better
tracking performance can be achieved. Up to now, we can
conclude that our tracker is more robust than the other four
reference trackers to handle complex tracking tasks. The favorable
performance of our algorithm can be attributed to several factors.
The most important one is our two-stage solution which presents
a reliable way to suppress the influence of particles located in the
background or placed at the ill-conditioned positions. Besides
that, the proposed state transition model is really adapted to
keeping particle diversity in the fast movement scenarios.

Second, empirical results show that a tracking algorithm with
scale adaptation usually exhibits better performance in contrast
with the one having no scale adaptation [14,23,47]. Here, we
further implement another set of experiments on the ping-pong
ball sequence to exploit the influence of scale changes. In the
experiments, our tracker is run in two different ways. In the first
way, scale adaption is not considered, while in the other way it is
considered. Fig. 9 depicts the RSE curves of two trackers. Note that
without scale adaptation, the tracking errors of most frames are
rather small. However, the tracker drifts off the target at frame
#72 when the ping-pong ball size largely shrinks. In addition, the
average RSE over successful tracks increases from 4.00 to 6.28
pixels. Therefore, with scale adaptation, our approach performs
more accurate and robust. These results clearly demonstrate that
scale adaptation acts as a boosted ingredient to tracking perfor-
mance in the scenario of object scale changes, especially for
drastic scale changes. This topic has been explored in [47,48]
and our previous work [49].

Finally, the computational cost of a tracking algorithm usually
affects its application in real-time environments. Although we
have already stated the complexity of the proposed tracking
algorithm, it is still necessary to compare its actual processing
speed with those of the other reference algorithms. To this
purpose, the overall running time of each tracking algorithm
has been recorded for each video sequence during the experi-
ments. Recall that all these tracking algorithms are implemented
in MATLAB, we compute the average processing speed of each
tracker so that to have a simple comparison of computation cost.
For KBOT tracker, the averaged processing speed is about 9–14
frames per second (fps). For PF tracker, it is only about 0.3–0.6 fps.
Our approach achieves an average processing speed of 1–3 fps.
Since the number of particles is same for [29] and our tracker, the
average processing speed of [29] is similar to that of our
approach. As for the tracker of [31], it exhibits a slower speed
because it applies mean shift procedure on each particle for two
separate times.
5. Conclusion

Visual tracking is a hot research topic in computer vision. In
this paper, we address visual tracking via considering the associa-
tion of PF and KBOT. The main purpose of PF and KBOT association
is to build up a more robust visual tracking approach via
combining their strengths and alleviating their weaknesses. To
achieve this purpose, the following items have been explored.
(1) For the problem of what kind of particles are fit for applying
KBOT to refine their position states for more accurate mode
seeking, it has been theoretically analyzed. (2) In accordance
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Fig. 8. Comparison of the RSE between our tracker and the other four trackers on four video sequences. (a) Pedestrian. (b) Man’s face. (c) Ping-pong ball. (d) Girl’s face.

Table 2
Comparison of the average RSEs for five trackers on four video sequences (in

pixels, lost tracks are discarded).

Video sequence PF KBOT [29] [31] Our tracker

Pedestrian 7.73 13.89 6.09 6.00 5.65

Man’s face 18.30 20.90 8.73 11.64 5.48

Ping-pong ball 13.06 12.41 4.79 4.62 4.00

Girl’s face 5.81 9.02 5.74 5.93 5.22
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with the theoretical analysis, the problem of how to design a
computationally tractable way to pick out propagated particles
that are well suited for invoking KBOT is also addressed. As a
result, a two-stage solution is proposed. In our solution, the IBD
based stage is devoted to distinguishing the particles located in
the object region from those placed in the background, and the
matrix condition number based stage is dedicated to eliminat-
ing the particles positioned at the ill-posed conditions for invok-
ing KBOT. (3) To deal with the difficulties caused by fast
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Fig. 9. A comparison of our approach with and without scale adaptation on ping-pong ball sequence.
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movement scenarios, a state transition model embodying object-
scale oriented information and prior motion cues is proposed.
Also, the conventional gradient based mean shift optimization is
modified by discarding the later unnecessary iterations. The
efficacy of the proposed association approach has been fully
demonstrated by comparative experiments.

Although we have presented the theoretical and computa-
tional solutions to the key problem in the association of PF and
KBOT, there are still some aspects that deserved further study.
Color histograms are used as the object descriptors for performing
fair comparison of our association approach and related methods
in the experiments. However, as we mentioned in the introduc-
tion section, features play an important role in practical tracking
tasks. As for color histograms, they are not well adapted to
handling varying light conditions, etc [17,19]. Therefore, in our
future work, we first plan to combine heterogeneous features
such as color, texture and shape into the proposed association
algorithm for achieving more robust tracking performance. We do
not directly address the long-term object appearance changes in
the current work. However, this problem can be effectively
resolved by appropriately updating the target model [13,36,41].
Particle sampling is an important component of PF. When the
particles are sparsely sampled and the object is not covered in
search region, PF algorithms will not converge to the true mode of
the target any more. This is an open issue in PF [25].
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