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We present a new object tracking scheme by employing adaptive classifiers to match the corresponding
keypoints between consecutive frames. The detection of interest points is a critical step in obtaining
robust local descriptions. This paper proposes an efficient feature detector based on SURF, by incremen-
tally predicting the search space, to enhance the repeatability of the tracked interest points. Instead of
computing the SURF descriptor, we construct a classifier-based descriptor using on-line boosting. With
on-line learning ability based on our sample weighting mechanism, the classifier maintains its discrim-
inative power to establish robust feature description and reliable points matching for subsequent track-
ing. In addition, matching candidates are validated using improved RANSAC to ensure correct updates
and accurate tracking. All of these ingredients contribute measurably to improving overall tracking per-
formance. Experimental results demonstrate the robustness and accuracy of our proposed technique.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Robust object tracking under real-world conditions is still an
open issue and limits the use of state-of-the-art methods in appli-
cations ranging from visual surveillance to human–computer
interfaces. The difficulties of object tracking include complicated
object appearance variations, illumination change, partial occlu-
sions and cluttered scenes.

Recently, tracking formulated as a classification problem has re-
ceived a lot of attention due to its promising results. The classifica-
tion-based tracking algorithms can be classified into two
categories: region-based methods and feature-based methods. In
case of the region-based methods (Avidan, 2004, 2005; Collins
and Liu, 2005; Grabner et al., 2008), the basic idea is to learn a bin-
ary classifier which distinguishes the object from the background.
The main advantage of region-based method is its relative robust-
ness against illumination change, occlusion and cluttered scenes.
However, these approaches have problems with complex transfor-
mations of the target object. In contrast, feature-based trackers
(Grabner et al., 2007; Lepetit et al., 2005; Meltzer et al., 2004)
are more adaptive to the object transformations. In (Lepetit et al.,
2005; Lepetit and Fua, 2006), a feature-based tracker proposes ran-
domized trees and ferns to discriminate keypoints from each other
by classifiers. Although their algorithm demonstrates excellent
empirical results, it entails learning a set of object changes before
the tracking task begins. To achieve robust tracking with this
method, it is imperative to collect a large set of training images
ll rights reserved.

: +86 10 62780317.
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covering the range of possible appearance variation, costing a con-
siderable amount of time.

To cope with these problems, Grabner et al. (2007) propose an
efficient tracking approach which employs the on-line boosting
algorithm (Grabner and Bischof, 2006). However, such approaches
typically operate on the premise that the model of the target object
does not change drastically over time. The keypoints are detected
using Harris corner which is sensitive to scale changes, not to men-
tion more complex transformations. The tracker is prone to failure
when significant appearance variations such as affine transforma-
tion and viewpoint change arise.

By contrast, in our earlier work (Miao et al., 2010), we propose a
rough-but-robust feature-based tracking algorithm which fuses
the keypoints’ scale and rotation information into the on-line
boosting technique. This paper further expands the original idea
and thus provides in detail a new framework which fully improves
the robustness of object tracking. Our contributions can be sum-
marized as follows:

(1) To exploit the sequential patterns in the data, such as corre-
lations between observations close in the sequence, we effi-
ciently compute the SURF features in each video frame by
incrementally predicting the object region.

(2) We employ the scale information and the dominant orienta-
tion of SURF feature to guide the discriminative learning
process of the keypoints’ description. This leads to a series
of scale- and rotation-invariant classifiers that are able to
cope with significant appearance variations between frames.

(3) Unlike standard RANSAC (Hartley and Zisserman, 2004), we
employ a non-uniform sampling strategy according to the
matching score of each classifier. That is, we consider the
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matches with higher matching score more reliable and give
them larger weight, to achieve efficient verification and
robust estimation of the homography.

(4) We improve the on-line boosting technique by adaptively
updating the classifiers. Discriminative samples are selected
and assigned higher importance weights.

The remainder of this paper is organized as follows. Section 2
reviews the on-line boosting technique and gives a short survey
on existing local feature detectors. A detailed description of the
whole tracking framework is presented in Section 3. In Section 4,
we illustrate how to implement the proposed algorithm and give
a brief analysis of parameters setting. Section 5 is dedicated to
experimental validations and Section 6 concludes this paper with
remarks on potential extensions for future work.
2. Background and related work

2.1. On-line boosting

The underlying idea of boosting is to combine a set of well se-
lected weak classifiers (Freund and Schapire, 1997) to form a
strong classifier. After the seminal work of Viola and Jones
(2001), boosting has been successfully used in many computer vi-
sion problems, such as human detection (Laptev, 2006), image re-
trieval (Tieu and Viola, 2004), face detection (Viola and Jones,
2004), etc.

Recently, there has been considerable research interest in on-
line vision applications, in which the learning and updating phase
are performed on-line as new samples arrive. Oza and Russell
(2001) make the primary efforts on studying on-line boosting
and demonstrate their equivalence to the off-line counterparts un-
der particular conditions. Based on Oza and Russell (2001), Nair
and Clark (2002) employ on-line boosting in a co-training frame-
work for object detection, Collins and Liu (2005) apply on-line dis-
criminative learning in object tracking and Grabner and Bischof
(2006) propose a novel on-line boosting for feature selection, etc.

There is a rich literature in on-line boosting and a thorough dis-
cussion on this topic is beyond the scope of this paper. Here, we
briefly review the most relevant on-line boosting algorithm (Grab-
ner and Bischof, 2006) in which the strong boosted classifier C is
composed of J selectors hsel

j . Each classifier holds a binary weak
classifier pool X from which the training procedure selects the ones
with the minimal estimated error. The strong classifier wishes to
predict the matching confidence measure of an unknown point x
by:

CðxÞ ¼ conf ðxÞ; ð1Þ

conf ðxÞ ¼
XJ

j¼1

aj � hsel
j ðxÞ

XJ

j¼1

aj

,
; ð2Þ

where the value conf(�) denotes the confidence measure. As new
samples arrive sequentially, each selector hsel

j is responsible for re-
selecting the best weak classifier and the corresponding voting
weight aj is updated.

During boosting learning, how to construct a robust weak
classifier pool is an important issue. The method described in
(Grabner and Bischof, 2006) uses the standard Haar-like features
(Viola and Jones, 2001) computed in a fixed bounding patch cen-
tered at the corresponding keypoint, which can only deal with pure
translations and slight rotations. This paper employs the scheme
we proposed in (Miao et al., 2010) where the scale and the domi-
nant orientation of the keypoint are incorporated in the weak clas-
sifier pool. In addition, each sample should bear an importance
weight to indicate its contribution to the classifier update. Grab-
ner’s method gives all the samples equal weight. We emphasize
the negative samples that are ‘‘similar’’ to the positive one, to make
the updated classifiers more discriminative.

2.2. Feature detectors

Feature detectors, which provide the feature points to be
matched (Li and Allinson, 2008), are widely utilized in a large num-
ber of applications such as image retrieval (Tuytelaars and Van
Gool, 2004), image registration (Brown and Lowe, 2007), and object
recognition (Lowe, 2004). Feature detectors can be traced back to
the Moravec’s corner detector (Moravec, 1977), and improved by
Harris and Stephens (1988) to make it more repeatable under small
image variations. However, Harris corners are very sensitive to
changes in image scale, so it does not provide a good basis for
matching images of different sizes. Lindeberg (1998) introduces
the concept of automatic scale selection. Based on Lindeberg
(1998), several approaches to scale-invariant interest point detec-
tion have been proposed, such as the detector based on Harris-La-
place and Hessian-Laplace by Mikolajczyk and Schmid (2001),
Difference of Gaussians (DoG) in SIFT by Lowe (2004), and Hessians
approximated in SURF by Bay et al. (2006). Matas et al. (2002) have
also developed the maximally stable extremal region (MSER)
detector, which is a watershed-like method.

In this paper, we use the SURF detector (Bay et al., 2006) to ex-
tract keypoints because of its high detection accuracy and full
invariance to rotation and scale changes. Furthermore, it can be
computed efficiently due to the use of integral images.
3. Proposed algorithm

Feature-based object tracking involves three consecutive steps:
feature detection, feature description and feature matching. In fea-
ture detection, we incrementally detect keypoints based on SURF.
Then we compute the classifier-based descriptions, followed by
feature matching in which adaptive classifiers are employed.

The target object region is located in the first frame, either man-
ually or by using an automated detector. When a new frame ar-
rives, we establish matching candidates with the previous frame
by means of the feature-based scheme mentioned above. The
homography H is estimated using weighted RANSAC over the set
of matching candidates. The on-line classifiers are updated to per-
form further target tracking in the subsequent frame. In the
remainder of this section we will describe the algorithm shown
in Fig. 1.

3.1. Local feature detection

As is pointed in (Mikolajczyk and Schmid, 2001), the repeatabil-
ity of the Harris corner detector fails when image resolution
changes significantly. In contrast, the SURF detector is more robust
to variations. Ta et al. (2009) propose an incremental SURF detec-
tion scheme to detect matching candidates of each keypoint in a
local neighborhood, aiming to make establishing feature corre-
spondences easier. However, the neighborhood has to be three
dimensional (including the scale space), which will take time to
search. Moreover, it will be a waste of memory since there are of-
ten overlaps between the neighborhoods of different keypoints
within the object.

In this subsection, we efficiently detect keypoints in each frame
by predicting the object region. As feature matching is performed
within the object region in our tracking scheme, predicting the tar-
get object means telling the possible range matching candidates
are located in. Suppose we are observing a binary variable describ-
ing whether on a particular day it rains or not. If we consider the



Fig. 1. Flowchart of the proposed on-line feature-based tracking algorithm.
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distribution as i.i.d., then the only information we need is the rel-
ative frequency of rainy days. However, we know in practice that
the weather often exhibits trends that may last for several days.
Observing whether or not it rains today is therefore of significant
help in predicting if it will rain tomorrow. Similarly, since most
of the time consecutive frames are highly correlated, we use the
homography Ht�2,t�1 between the consecutive frames It�2 and
It�1 to simply transform the object region boundt�1 to get the pre-
dicting object region boundpre

t in frame It:

boundpre
t ¼Mapðboundt�1; Ht�2;t�1Þ; ð3Þ

where Map(bound;H) is the mapping function based on the homog-
raphy H.

In practice, the predicted searching space boundpre
t works well

in most cases, except when abrupt object movement occurs. To
solve this problem, we use a global detection scheme as a backup
to ensure the efficiency and accuracy of our tracker. For details
about the global detection, refer to Section 4.
3.2. Robust classifier-based matching under the guidance of scale and
orientation

In our matching scheme, the classifier-based keypoint descrip-
tion is formed by a linear combination of weak classifiers, chosen
by selectors from a weak classifier pool X. For each feature point,
Grabner et al. (2007) use fixed neighborhood to construct the weak
classifier pool, which cannot cover the same image content as the
image region will change with scale and rotation variations. In our
scheme, the neighboring region contains scale and dominant orien-
tation information to make the description invariant to complex
changes.

Similar to Grabner and Bischof (2006), we also use Haar wavelet
representation in weak classifier to capture the structural similar-
ities between object changes. In addition, we create a Ms �Ms (M
is a constant) square region to compute the Haar-like responses.
The window size is determined by the point’s scale. Moreover,
the region is rotated relative to the dominant orientation a. Our ap-
proach samples this window with sampling step s and then com-
putes the Haar wavelet responses at each sample point.
Furthermore, the responses are distributed in horizontal and verti-
cal direction where ‘‘horizontal’’ and ‘‘vertical’’ is defined in rela-
tion to a, followed by normalizing each response within the s � s
region. We use two kinds of features. The value of a two-rectangle
feature is the difference between the sum of the pixels within two
rectangular regions. The regions have the same size and shape re-
lated to scale and are adjacent along the dominant orientation. A
three-rectangle feature computes the sum within two outside rect-
angles subtracted from the sum in a center rectangle. All these fea-
tures are used to establish a binary weak classifier pool for
selectors to choose from. All classifiers are normalized to the
point’s scale and represented relative to the orientation, thus
achieving invariance to image scale and rotation.
As can be seen, our classifier-based keypoint description is quite
different from the SURF feature description despite the same key-
points detection. As for the SURF feature descriptor, first the inter-
est region should be split up into 4 � 4 square sub-regions with
5 � 5 regularly spaced samples points inside. Then the spatial dis-
tribution of intensity changes in each sub-region is computed,
weighted and summed, followed by histogram-based calculation.
After performing interpolation and normalization on the resulted
histogram, the 64D feature vector is thus achieved. The best
matching candidate is found by identifying the nearest neighbor
in the database of detected keypoints. The nearest neighbor is de-
fined as the keypoint with minimum Euclidean distance for the
established descriptor vector, using k–d tree or exhaustive search.
In contrast, our work mainly employs the scale and dominant ori-
entation information to guide keypoints matching and classifier
learning. Take keypoints matching for example, we treat it as a
classifying problem, rather than searching similar feature vector.
According to scale and orientation, each selector of the strong clas-
sifier seeks its corresponding Haar-like feature within the invariant
neighborhood centered around the current keypoint and outputs
the classification result. Similarly, we can also apply the scale
and orientation of selected samples to steer classifier updating,
which is somewhat like an inverse process to matching.

In general, the SURF feature descriptor is more suitable for
matching wide-baseline static images, while our on-line classi-
fier-based matching can adapt to the object changes in video se-
quences better, even though the changes may be complex. As for
computing complexity, the Euclidean distance between 64D fea-
ture vectors has to be computed for the SURF feature descriptor
while in our scheme 20 selectors are sufficient to produce a highly
efficient classifier (refer to Section 4.2).
3.3. Object tracking

The object tracking problem is formulated as follows. We build
a P-class discriminant by constructing P classifiers {C1,C2, . . . ,CP},
each corresponding to a keypoint {k1,k2, . . . ,kP} lying within the
current object region. Given the keypoints set � = {c1,c2, . . . ,cQ} de-
tected in the new frame, we employ the classifiers to find the point
ei corresponding to ki by:

ei ¼ arg max
cq2�

CiðcqÞ: ð4Þ

Similarly, the set of matching candidates R = {e1,e2, . . . ,eP}is estab-
lished by evaluating all the classifiers on �.

The homography estimation is fairly straightforward: given the
set of matching candidates R = {e1,e2, . . . ,eP}, we proceed to esti-
mate the homography H and reject incorrect matches. Classical
RANSAC adopts unique uniform sampling (UUS) strategy to select
the matching pairs in each cycle. The drawback is that the confi-
dence information each classifier provides is completely ignored.
Some of the matching pairs with relatively low confidence are
not reliable enough for computing accurate H. Instead of RANSAC,
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a non-uniform sampling strategy called weighted sampling (WS) is
introduced in (Kalal et al., 2008). In this subsection, we integrate
the weighted sampling strategy with the standard RANSAC, which
is very similar to PROSAC (Chun and Matas, 2005). The difference is
that samples in PROSAC are drawn from progressively larger sets of
top-ranked correspondences while in our scheme the frequency of
selecting each matching pair is based on its sampling weight. Our
approach uses the confidence information as the sampling weight.
That is, we consider the matches with higher confidence measure
more reliable and select them more frequently to achieve efficient
estimation of the homography. Fig. 2 illustrates the process.

Assume the target object has been successfully identified in
frame t � 1. When frame t arrives, we estimate the homography
Ht,t�1 = (h1, . . . ,h8)T. If the number of inliers exceeds a threshold,
the object can be tracked by transforming boundt�1 using Ht,t�1.

3.4. Adaptive on-line updating

Once the homography H is successfully computed, the strong
classifiers describing the tracked object will be updated using
matches as positive samples and other keypoints as negative sam-
ples. Since only the correct match can be used as the positive sam-
ple for each classifier, how to assign each negative sample the
importance weight kis a crucial problem. In (Miao et al., 2010),
we first proposed to improve the on-line boosting algorithm
(Grabner and Bischof, 2006) by non-uniformly updating the key-
points. This subsection reviews this idea and presents a more de-
tailed analysis. On the one hand, the importance weight of each
negative sample x is related to its confidence measure:

k1ðxÞ ¼ lþ r � exp conf ðxÞ þ gf g; ð5Þ

where l, r and g are constants. When a sample has a high confi-
dence measure, its importance weight is likewise high. This way,
we emphasize the negative samples close to the classifier hyper-
plane such that the classifier will learn to better distinguish these
samples (shown in Fig. 3). The updated classifiers convey much
more distinguishable information under the circumstance when ob-
jects are similar to the background and make detected feature point
more distinguishable from each other. As a result, the on-line
trained classifier is less likely to have false positives and thus higher
matching accuracy.
Fig. 2. Weighted sampling for RANSAC. Matches with higher confidence measure
are considered more reliable for homography estimation.

Fig. 3. Negative samples that are closer to the classifier hyperplane are assigned
higher importance weight in order to improve the classifier’s discriminative power.
On the other hand, we consider the distance between the se-
lected negative sample and the positive one. A kernel function is
introduced to give the nearer negative samples more weight:

kðxÞ ¼ k1ðxÞ � Kðx� x̂Þ; ð6Þ

where K( ) is the 2-D realization of the kernel function, which is
symmetric and attains its maximum at zero. x and x̂, respectively
denote the selected negative sample and the positive sample. As
the proposed method uses sampling strategy in motion estimation,
false matching candidates are usually located near the true corre-
spondence in the image domain. The resulted false matching pair
is also suitable for the computed motion and mistaken as one of
the inliers. Afterwards this will lead to incorrect updating due to
the established false positive samples, which seriously influ-
ences the accuracy of subsequent tracking. Emphasizing the nearer
negative samples can make the updated classifier better distinguish
the true correspondence from its confused neighbor. The impor-
tance weight of the positive sample x̂ (the corresponding keypoint)
is the summation of the weights of all the negative samples.
4. Summary of the tracking algorithm

4.1. Implementation details

In the first frame I1, we need to define the object region. After-
wards, the keypoints set W is detected using the SURF detector and
separated into object keypoints K and background points O such
that K \ O = ;, K [ O = W. Next we randomly choose P keypoints
from K to form a subset K = {k1,k2, . . . ,kP} (K �K), and create the
corresponding classifier Ci for ki. Then we establish weak classifier
pool Xi for Ci and employ the boosting algorithm (Grabner and
Bischof, 2006) to initialize Ci, and update Ci using ki as positive
sample and other keypoints randomly chosen from W as negative
samples.

Now assuming the target object has been successfully tracked
in frame It�1. When frame It arrives, we detect the set of keypoints
�t using our incremental SURF-based detector. The matching can-
didates R = {e1,e2, . . . ,eP} are established by Eq. (4).

The following is a verification step using the weighted RANSAC
scheme. If the number of inliers T exceeds a threshold d, tracking is
considered successful and boundt is computed using Ht,t�1. We ob-
tain a subset of correct matches Rc # R and then employ our ob-
ject updating scheme to update the classifiers. Meanwhile, we
compute the probability Pi,t+1 that classifier Ci will still match suc-
cessfully in the next frame. The method for calculating Pi,t+1 is the
same as (Grabner et al., 2007):

Pi;tþ1 ¼ bPi;t þ ð1� bÞqi; qi ¼
1 ei 2 Rc;

0 else;

�
ð7Þ

where b 2 [0,1] denotes the weight current probability takes over
the matching judgment. That is, Pi,t+1 is based on Pi,t and rise or fall
according to the matching judgment. If the current match is correct,
we consider the classifier more reliable, and vice versa. If Pi,t+1 is be-
low a threshold h, we randomly choose a new keypoint lying within
boundt and initialize a corresponding classifier Ci to better adapt to
target changes. On the other hand, if RANSAC fails, we remove the
spatial constraint and supplement to detect the keypoints in the
whole image as the set �t and repeat the aforementioned steps. If
RANSAC still fails, we discard the current frame It and wait for
It+1, because It might be corrupted by possible motion blur or signif-
icant object changes, making the corresponding keypoints difficult
to be detected and matched.
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4.2. Parameters setting

While details on the whole system are presented in Section 3,
several parameters mentioned above merit discussion. In Grabner’s
tracker which uses the Harris corner detector, 60 classifiers (P = 60)
are employed in the object. In contrast to the corner detector, the
SURF detector detects the local minimal or maximal in a 3D space
(including scale space) and also has to eliminate unreliable points
by interpolation and computing edge responses. Because of the
elimination, the total number of keypoints detected in the target
object is reduced. In this paper, we randomly choose 40 keypoints
in the object as classifiers and the threshold d in the verification
step is set to 10. Although the quantity decreases, the quality is im-
proved: it outperforms the previously used detector with respect
to repeatability and distinctiveness, thus making the tracking per-
formance more reliable.

When computing our classifier-based keypoint description, we
calculate the first order Haar wavelet response as weak classifiers
in a Ms �Ms (s denotes scale) neighborhood centered around each
keypoint. To make the weak classifier pool richer, we should try to
increase M. However, as for the keypoints detected with a very
large scale, the length Ms may go beyond the image border. In this
paper, we refer to the SURF feature description (Bay et al., 2008) in
which the size is 20s and set M = 20. Hence there will be about
1500 Haar wavelet response, and the weak classifier pool randomly
chooses 250 responses as weak classifiers.

Each classifier contains certain number of selectors (J). Classifi-
ers with more selectors will achieve lower false positive rates but
also require more time for matching and updating. To find a bal-
ance between discriminative power and computational efficiency
of classifiers and the number of selectors, we perform tracking
on a sequence with about 1000 frames with various object changes
using different setting of J. We observe that setting J = 20 is appro-
priate to produce a highly efficient classifier.

5. Experiments

We now present the experimental results of applying our algo-
rithm on several video sequences. All experiments are imple-
mented in C++ code on a PC with 2.2 GHz CPU and 2 GB RAM.
The image size is 640 � 480. For comparison, we implemented
Fig. 4. Tracking a notebook under complex appearance changes. Fro
the Grabner’s tracker described in (Grabner et al., 2007). To better
illustrate the soundness of our approach, we have implemented
another feature-based tracker in which the first frame is consid-
ered as the reference frame and correspondences are established
between the keypoints in the defined object region of the reference
frame and those in the input frame. The best candidate match for
each keypoint is defined as the one with the minimum Euclidean
distance for the SURF descriptor vector. We call this second ap-
proach the SURF-based method. In experiment section, we will
compare the performance of the SURF-based method, Grabner’s
method and the proposed method, in terms of their ability to han-
dle changes in illumination as well as appearance.

As a first attempt, we focus on tracking the object in the follow-
ing sequence shown in Fig. 4. The sequence is captured by moving
the target up and down and rotating it, causing complex appear-
ance changes including both viewpoint change and the scale and
rotation variations. In the beginning, we compare the calculation
speed of these methods. For the SURF-based method, it will take
more than 200 ms to extract a total number of 900 feature points.
In addition to computing the interest point description (64D vec-
tor) and the nearest neighbor indexing for matching, the overall
tracking speed of the SURF-based method is less than 3 fps. In con-
trast, our approach of applying the incremental SURF detection
saves a lot of time, taking only 50 ms on average. The resulted
tracking system runs at a speed of about 7 fps.

The efficiency of our incremental SURF detection can be ex-
plained as follows. Specifically, the computation time of SURF
detection consists of two parts: point localization and orientation
assignment. The computational cost of point localization is directly
associated with the image size, in that the calculation of Hessian
matrix as well as the scale space representation are built on the
image pyramid generated by sub-sampling the original image. Be-
sides, the calculation time of orientation assignment is obviously
proportional to the number of detected point. As in most cases
the object movement in consecutive frames presents consistent
tendency, the incremental detection scheme successfully reduces
the search space and the number of detected points, while not
sacrificing the performance. As for Grabner’s method, the tracker
achieves a frame rate of 12 fps (the same as is announced in
(Grabner et al., 2007)) due to the fast Harris corner detector. How-
ever, we still decide to employ the SURF detection, in that it has
m left to right column, the first, 38th, 142th and 225th frame.
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been proven to outperform most previously proposed schemes
with respect to robustness and detection repeatability (Tuytelaars
and Mikolajczyk, 2008), including Harris corner. The tracking per-
formance below validates the advantages.

As is shown in Fig. 4, once large viewpoint change between the
current frame and the first frame occurs (the 142th frame), the
SURF-based method could not work because its descriptor is un-
able to preserve invariance. Grabner’s tracker fails to track the ob-
ject in later frames since it lacks the adaption to complex changes
of the object. Our tracker continues to track the object despite the
significant appearance change. The performance can be explained
by the sample trajectory described in Fig. 5. On-line learning of lo-
cal features allows us to apply correct matches obtained over time
as the positive updates to the corresponding classifier. As for Grab-
ner’s tracker, its simple classifiers can only deal with slight changes
Fig. 5. Patches for positive updating the corresponding classifier are collected during tra

Fig. 6. Number of the matches of the proposed algorithm v
with the help of on-line learning. Under other more complex
changes (e.g. large scale and rotation variation), the corresponding
patch for its positive sample is out of square. Thus the classifier
updating will fail and the keypoints cannot be classified after-
wards. In contrast, the guidance of the scale and rotation informa-
tion on the on-line classifier learning makes the proposed method
ideally suited for such rapid changes. Our positive patches col-
lected during tracking are represented relative to the scale and ori-
entation for the weak classifier pool to find its true counterparts for
updating. In addition, the incremental detection scheme helps to
further improve the detector’s repeatability, especially under the
viewpoint change.

Fig. 6 shows the number of matches certificated by RANSAC for
each frame. Tracking loss (the percentage is below 25%) occurs fre-
quently using SURF-based method and Grabner’s method because
cking. Patches for negative updates are randomly selected from any other keypoint.

ersus the SURF-based method and Grabner’s method.



Fig. 7. Tracking a card under image occlusion and scene clutter. From left to right column, the first, 52th, 55th and 67th frame.
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of the significant appearance change. However, our proposed
tracker can handle the phenomenon. In most general cases, the
proposed tracker establishes more correct matches than those in
the other two methods, validating the superiority of our approach.

To illustrate the strength of our object updating scheme, we ap-
ply the trackers in the following sequence where the target period-
ically moves behind a similar looking object, causing image
occlusion and scene clutter.

The tracking performance is shown in Fig. 7. The SURF-based
tracker suffers from image occlusion because some of the corre-
sponding keypoints disappear when occlusion occurs. As for Grab-
ner’s tracker, the performance declines around the 52th frame and
the tracking region is completely confused at the 55th frame. Some
keypoints lying in the occluder are mistaken as the new classifiers,
since their descriptions are extremely similar to those in the target
object. In contrast, our tracker does not exhibit this error. The rea-
son is that our adaptive object update improves the classifiers’ dis-
criminative power and thus rejects the confusing outliers. In
addition, the scheme of the weighted sampling for RANSAC makes
the keypoint matching more reliable. As a result, the probability
Pi,t +1 for a certain classifier Ci remains high and thus the occluder’s
keypoints are prevented from being selected as new classifiers.
6. Conclusion and future work

This paper presents a new framework for object tracking based
on SURF, in which feature points in the defined object are matched
between consecutive frames by adaptive classifiers. The proposed
incremental feature detection scheme not only increases the detec-
tor’s repeatability but also speeds up the whole tracking system.
Equipped with the scale and rotation information, the Haar wave-
let representation is sufficient to construct reliable classifiers. In
addition, the mechanism of weighted sampling for RANSAC and
the modified object updating scheme ensure the matching accu-
racy and the classifier’s distinctiveness. Experimental results verify
that our approach completely outperforms the state-of-art tracker
to achieve robust and accurate tracking.

There are also some interesting ways to extend this work in the
future. First, while our current experiments are limited to 2D trans-
formations, future work will attempt to include 3D motions as
well. Moreover, while our tracker achieves efficient tracking by
employing incremental keypoints detection, future work will in-
volve a more efficient on-line updating process to further improve
the tracking speed.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.patrec.2011.05.017.
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